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4. Tension et potentiel électrique 17
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CHAPITRE 1

Electrostatique

1. Charge & corps chargés

1. Définition.
La charge est une propriété fondamentale de la matière, se manifestant par l’interaction entre

deux corps chargés. De nombreuses expériences révélèrent l’existence de deux types de charges
nommées positives et négatives pour des raisons historiques.

Deux corps portant des charges de même nature (positives ou négatives) subiront une force
répulsive, alors que deux corps portant des charges de signe opposé subiront une force attractive.

Des expériences menées au 20e siècle démontrèrent que la charge d’un corps est toujours un
multiple entier de la charge élémentaire e ' 1.610−19 Coulomb, il s’agit donc d’une grandeur
quantifiée. La charge élémentaire correspond à la charge d’un électron (négative) ou d’un proton
(positive) et cette grandeur est conservée dans un système isolé, il est donc impossible de détruire
ou de créer de la charge.

L’unité de la charge est le Coulomb [C] d’après Charles-Augustin de Coulomb (v. plus loin).
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2. Electrisation par frottement/contact.
La charge globale de la majorité de la matière est neutre, puisqu’un atome contient autant de

charges négatives (électrons) que de charges positives (protons dans le noyau), s’il n’est pas ionisé.
Il est cependant possible de modifier la charge globale d’un corps en le frottant, comme nous

l’avons tous constaté (à nos dépens) en recevant un léger choc électrique en présence d’un corps
métallique après nous être chargés par frottement sur un sofa ou une moquette.

On peut par exemple frotter un bâton en plastique (neutre) avec de la fourrure (neutre) pour
obtenir un bâton portant une charge globale non-nulle.

Figure 1. Transfert de charges par frottement

Comme on peut voir sur le croquis ci-dessus, le bâton arrache des électrons à la fourrure
et porte finalement un excès d’électrons, alors que la fourrure accuse un manque d’électrons. La
fourrure est chargée positivement et le bâton négativement. On peut aussi frotter une tige en verre
avec un morceau de soie, dans ce cas la tige se chargera positivement et la soie négativement.

N.B. dans tous les cas, le transfert de charge est un transfert d’électrons, donc de charges
négatives. Un corps se chargeant positivement a donc perdu des électrons et non acquis des
charges positives. Ceci est dû au fait qu’il est pratiquement impossible d’arracher les protons
situés dans le noyau, alors qu’il est relativement aisé d’arracher les électrons dans les couches
extérieures d’un atome, où ils sont faiblement liés.

Les charges présentes en excès sur le bâton peuvent maintenant être en partie transférées par
contact à un autre corps (p.ex. un électroscope) et le charger à son tour. Dans le cas d’un
électroscope, l’appareil indique la présence de charges et son intensité par la répulsion entre le
cadre de l’électroscope et l’aiguille pivotante.

De manière générale il faut donc un contact entre deux corps pour que la charge de l’un puisse
être en partie transmise à l’autre.
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Figure 2. Electrisation par contact d’un corps (électroscope)

N.B. C’est l’effet d’attraction exercé par de telles matières chargées par frottement sur d’autres
petits corps légers qui fut constaté par certains savants grecs présocratiques : l’une des matières
exhibant cet effet est l’ambre, en grec elektra (Hλεκτρη) et c’est ce terme repris par p.ex. William
Gilbert (1544-1603) dans son ouvrage De Magnete qui a donné le nom d’électricité.
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3. Conducteurs & isolants.
Certaines substances laissent facilement traverser les charges, comme p.ex. les métaux ou les

solutions liquides contenant des ions, il s’agit de conducteurs électriques.
D’autres substances laissent difficilement traverser les charges, on parle alors d’isolants. Le

plastique, le bois, l’air (froid et sec) ou l’eau distillée sont p.ex. des isolants et c’est la raison pour
laquelle la charge reste présente assez longtemps sur un bâton frotté, puisqu’elle ne peut pas se
répartir dans le plastique ou se décharger dans l’air. Un électroscope en métal par contre peut
facilement accueillir des charges présentes sur ce bâton, puisqu’il s’agit d’un conducteur. On peut
aussi constater qu’il est facile de décharger l’électroscope à l’aide d’un doigt, le corps humain étant
un assez bon conducteur.

!"#$% &'()

Figure 3. Conducteurs & isolants

Les tableaux suivants contiennent certaines valeurs de la conductivité (en Siemens S par mètre
m) pour des substances isolantes ou conductrices.

Conducteurs Conductivité S ·m−1

Cuivre (Cu) 5.96 · 107

Or (Au) 4.1 · 107

Eau salée 4.8

Isolants Conductivité S ·m−1

Eau distillée 5.5 · 10−6

Air ∼ 3− 8 · 10−15

Ebonite ∼ 10−21
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4. Influence.
Dans le cas de l’électroscope p.ex., on peut constater que l’aiguille commence à pivoter lorsqu’on

en approche la charge avant le contact et donc avant le transfert de charges, mais que cet effet
disparâıt si on s’éloigne à nouveau de l’électroscope sans l’avoir touché.

Il n’y a donc pas eu de transfert de charges d’un corps à l’autre mais le corps chargé au
préalable a exercé une influence sur l’autre corps grâce au champ électrique (v. plus loin) qui
l’entoure. Cette influence se manifeste par une force s’exerçant sur les charges présentes dans le
corps et par une nouvelle répartition de celles-ci dans le corps, on parle alors de polarisation.

5. Corps neutre.
Si le corps est globalement neutre, les charges identiques à celles présentes sur le corps chargé

qu’on en approche vont s’éloigner (elles sont repoussées), alors que les charges de signe opposé
vont s’approcher (elles sont attirées). On est donc en présence d’un corps où les charges ne sont
plus réparties de manière homogène, en d’autres termes un corps polarisé.

N.B. Nous verrons plus tard que la force est inversément proportionnelle au carré de la distance
(F ∝ 1

r2
), ce qui signifie dans le cas d’un corps neutre que l’attraction l’emportera toujours sur la

répulsion et s’il est suffisamment léger, qu’il sera assez attiré pour se déplacer vers le corps chargé.
Dans l’exemple suivant, on aproche un bâton chargé positivement d’un électroscope (neutre)

contenant deux feuillets conducteurs. On peut voir que les feuillets auront tendance à s’écarter à
cause de la répulsion augmentant avec les charges tentant de s’éloigner le plus possible du bâton
qui finissent dans les feuillets.

On peut constater que cette expérience nous montre que de la charge est présente sur le bâton,
en revanche elle ne nous permet pas de déterminer la nature de cette charge, l’effet étant identique
si le bâton est chargé négativement.
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Figure 4. Electroscope à feuillets et influence sur un corps neutre
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6. Corps chargé.
Un corps chargé au préalable ressentira aussi l’influence d’un autre corps chargé, on peut

exploiter cet effet pour déterminer le signe des charges.
Dans l’exemple suivant, l’électroscope a été chargé (négativement) par contact : en l’approchant

avec une charge négative, les feuillets s’écartent, alors que si l’on approche un corps chargé posi-
tivement, les feuillets se rapprochent.

Figure 5. Influence

7. Polarisation par influence.
On peut exploiter l’effet de la polarisation pour faire apparâıtre des charges sur p.ex. un

conducteur. Deux conducteurs en contact sont approchés d’une grosse charge les influençant : les
charges peuvent se répartir à travers les deux corps puisqu’il s’agit de conducteurs. Si l’on sépare
maintenant les deux charges toujours en présence de la grosse charge positive, on obtient deux
corps portant désormais un excédent net de charges.

N.B. La charge totale étant conservée on verra apparâıtre autant de charges négatives sur un
corps que de charges positives sur l’autre.
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8. Répartition des charges dans un conducteur & cage de Faraday.
Les charges ajoutées à un conducteur pouvant se déplacer pratiquement librement, elles es-

saieront donc de s’éloigner le plus possible les unes des autres. Ceci implique entre autres qu’elles
se répartiront toujours sur l’extérieur de la surface du conducteur. Si celui-ci est p.ex. sphérique,
elles se répartiront de manière régulière sur l’extérieur de la sphère.

Figure 6. Charges réparties sur l’extérieur d’une sphère conductrice

Si le corps possède des endroits où le rayon de courbure est petit comparé au reste de celui-ci (en
d’autres termes des pointes), les charges s’accumuleront dans ces pointes et le champ électrique
engendré par ces charges sera plus important à cet endroit, le corps aura donc tendance à se
décharger par ces pointes.

Figure 7. Répartition des charges dans un corps de courbure non uniforme.
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9. Cage de Faraday.
On peut montrer que les charges réparties sur l’extérieur d’un conducteur de surface fermée se
répartiront toujours de manière à neutraliser le champ électrique à l’intérieur du conducteur (que
celui-ci soit creux ou plein). Ceci s’applique aussi dans le cas d’une surface délimitée par un treillis
métallique (conducteur).

Cet effet fut découvert par Michael Faraday (v. plus loin) et on appelle donc un tel corps une
cage de Faraday.

Un avion, un ascenseur, une voiture sont des cages de Faraday protégeant les utilisateurs de
l’effet de la foudre par exemple.

Figure 8. Personne protégée par une cage de Faraday
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10. Benjamin Franklin 1706-1790.
Benjamin Franklin est l’un des pionniers de l’histoire américaine, à la fois scientifique de

rénommée internationale, en même temps politicien et diplomate habile, contribuant à la décla-
ration d’indépendance puis à la constitution de la nouvelle république des états unis d’Amérique.

Parmi ses contributions au monde scientifique, on doit à Franklin les noms de charge positive
et négative pour décrire les deux différents types d’électricité susceptibles d’être engendrés par
frottement. Avant cela, on utilisait souvent les termes d’électricité vitreuse (apparaissant sur une
tige en verre) ou d’électricité résineuse pour décrire les charges provoquées par frottement sur
chaque type de corps respectivement.

Figure 9. Benjamin Franklin et l’expérience du cerf-volant de Franklin

L’une des expériences les plus connues de Franklin fut de faire voler un cerf-volant par temps
orageux et d’extraire une étincelle à un objet métallique relié à celui-ci (la ficelle mouillée du
cerf-volant s’avérant un relativement bon conducteur). Cette expérience a permis de confirmer la
nature électrique de la foudre.

Franklin développa par la suite le para-tonnerre (ou para-foudre) qui fut p.ex. installé par le
roi Georges III sur les poudrières du royaume britannique.

2. La loi de de Coulomb

1. Définition.
Les recherches menées par Charles Augustin de Coulomb (en 1784) permirent de déterminer la

force agissant entre deux corps chargés et révèlerent que celle-ci était inversément proportionnelle
au carré de la distance et directement proportionnelle au produit des charges.

La force de Coulomb ou force électrostatique décrit donc l’interaction entre deux charges
ponctuelles en fonction du produit des charges et du carré de la distance r entre ces deux charges.

FC = k · q1 · q2

r2
ou ~FC = k · q1 · q2

r2
· ~r
r
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Comme on peut voir, la force ressentie par chaque charge est identique Fq1/q2 = Fq2/q1
La constante k est donnée par la relation suivante

k =
1

4πε0

' 9 · 109 Nm2

C2

Où la constante ε0 ' 8.85 · 10−12 A · s · V −1 · m−1 est la permittivité électrique du vide (et
environ celle de l’air).

• La force de Coulomb entre deux charges est répulsive pour deux charges de même signe
• La force de Coulomb entre deux charges est attractive pour deux charges de signe opposé

La force de Coulomb totale ressentie par une charge q1 est le résultat de la somme vectorielle
de toutes les forces exercées par les charges q2, q3 . . . qn

~FC = ~F2 + ~F3 + · · ·+ ~Fn
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2. Charles-Augustin de Coulomb 1736-1806.
Charles-Augustin de Coulomb était un scientifique français qui est probablement le plus connu
pour son expérience déterminant que la force s’exerçant entre deux charges est inversement pro-
portionnelle au carré de la distance : la force électrostatique ou force de Coulomb.

Il publia ses résultats en 1785 dans Premier Mémoire sur l’Électricité et le Magnétisme. Il
résulte donc de ces trois essais, que l’action répulsive que les deux balles électrifiées de la même
nature d’électricité exercent l’une sur l’autre, suit la raison inverse du carré des distances.

Coulomb développa pour les besoins de son expérience une balance à torsion très précise, lui
permettant de quantifier l’effet des charges entre elles. C’est aussi en se servant d’une balance
à torsion de type similaire que Henry Cavendish (1731-1810) parvint à déterminer une dizaine
d’années plus tard la valeur de la constante de gravitation universelle G ' 6.67 ·10−11 N ·m2 ·kg−2

Figure 10. Charles-Augustin de Coulomb et sa balance à torsion

En son honneur, l’unité de la charge porte le nom de Coulomb (C).

3. La notion de champ électrique

1. Définition.
La notion de champ, qui représenta une révolution fondamentale dans la manière de modéliser les
corps physiques et leurs interactions fut développée par Michael Faraday (1791-1867) et codifiée
mathématiquement par (entre autres ) James Clerk Maxwell (1831-1879).

En schématisant : la présence d’une charge Q a un effet sur l’espace environnant, la charge est
entourée par un champ dont l’effet peut se manifester en présence d’une autre charge (qtest). En
effet, si on introduit une charge test, (on veut dire par là que l’effet de cette charge sur le champ
peut être considéré comme négligeable) dans le champ, celle-ci ressent une force FC de la part de
Q.

On peut donc associer à chaque point de l’espace autour de Q un vecteur, qui multiplié par la
valeur de la charge test représente la force que celle-ci ressent, indiquant l’intensité et la direction
de celle-ci. Il s’agit donc d’un champ vectoriel, le champ électrique
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−→
F = q ·

−→
E ⇒

−→
E =

−→
F

q

On peut représenter le champ par des vecteurs ou par des lignes de champ. Dans ce cas, la
densité des lignes de champ indique l’intensité du champ et les lignes de champ sont en tout point
tangentes à la force ressentie

Figure 11. Champ vectoriel et lignes de champ pour une charge ponctuelle et
entre deux plaques chargées

Le champ électrique total exercé par les charges q1, q2 . . . qn en un point est

~E = ~E1 + ~E2 + · · ·+ ~En

L’unité du champ est le
[
N
C

]
, on utilise aussi souvent l’unité équivalente

[
V
m

]
N.B. Par convention la charge test est toujours considérée comme étant positive.

2. Exemples de champs particuliers.
2.1. Champ d’une charge ponctuelle. Pour une charge ponctuelle p.ex., on peut voir que le

champ est donné par

⇒ E = k · Q
r2

ou ~E = k · Q
r2
· ~r
r

Figure 12. champ d’une charge ponctuelle positive et négative

On parle aussi dans ce cas du champ d’un monopôle, puisqu’il ne s’agit que d’une charge.
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2.2. Champ entre deux plaques parallèles. Comme on peut voir sur ce graphique, le champ
entre deux plaques est uniforme, la valeur du champ est la même partout entre les deux plaques
(ceci n’est une bonne approximation qu’au centre entre les deux plaques)

E =
1

ε0

· Q
S

champ entre deux plaques parallèles de charge Q et de surface S

Figure 13. Champ entre deux plaques parallèles

2.3. Champ d’un dipôle. Deux charges de même signe ou opposées forment un système nommé
dipôle. Pour des charges opposées le champ se renforce entre les deux charges, pour des charges
de même signe le champ s’annule quelque part entre les deux charges.

Figure 14. Champ d’un dipôle pour charges opposées ou de même signe
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2.4. Exemples supplémentaires. Voici quelques exemples supplémentaires:

Figure 15. Quelques exemples de champs électriques

Figure 16. Exemple de champ entre 3 charges positives et 3 charges négatives
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3. Michael Faraday 1791 - 1867.
Physicien anglais né en 1791, Michael Faraday entrera dans l’histoire comme un expérimentateur
hors pair, contribuant énormément au développement de la théorie des champs et de l’électro-
magnétisme. Par ailleurs chimiste, il découvrira les lois de l’électrolyse et on lui doit l’adoption
de termes comme cathode, anode, ion parmi d’autres.

De condition modeste, il ne reçoit qu’une éducation sommaire et commence à l’âge de 14 ans
un apprentissage chez un relieur. Il mettra son temps libre à profit en dévorant les livres présents
chez son employeur. Autodidacte, il parviendra à impressionner Humphrey Davy (1778-1829)
président du Royal Institution à Londres qui l’engagera comme assistant de chimie en 1813. Il
gravira ensuite les échelons pour être finalement nommé professeur de chimie, une position lui
assurant un poste à vie au sein des institutions scientifiques de son époque

En 1831, Michael Faraday mènera une série d’expériences dont la portée sera phénoménale:
Faraday démontrera qu’il est possible d’induire un courant électrique dans un fil conducteur en
faisant varier le champ magnétique agissant sur celui-ci, l’induction électromagnétique. Cette
découverte est à l’origine de toute la production d’électricité que nous utilisons actuellement :
quel que soit le type de centrales, toutes utilisent une forme d’énergie pour faire tourner des
turbines contenant des aimants qui induiront un courant.

Figure 17. Michael Faraday 1791 - 1867

4. Tension et potentiel électrique

1. Tension.
Une charge se déplaçant, (au moins en partie), parallèlement aux lignes d’un champ électrique va
ressentir une force agissant pendant son trajet, ce qui veut dire qu’il y aura un travail et donc un
changement d’énergie.

Si par exemple la charge s’éloigne de l’autre charge engendrant le champ elle va :

• soit devoir travailler contre une force électrostatique qui l’attire, dans ce cas elle va
acquérir de l’énergie potentielle électrique.
• soit travailler avec une force électrostatique qui la repousse, elle va dans ce cas perdre

de l’énergie potentielle électrique et la transformer en énergie cinétique, thermique, de
rayonnement ...
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On peut démontrer que le travail de la force est proportionnel à la charge se déplaçant et qu’il
est indépendant du chemin: AF ∝ q ⇒ AF = q · U . Il existe donc une grandeur constante
U entre deux points déterminés de l’espace qui permet de calculer l’énergie perdue/reçue lors du
déplacement:

U =
AF
q

Cette quantité nommée U est la tension en V olt [V ] =
[
J
C

]
d’après Alessandro Volta (v. plus

loin).
Si une charge de 1 C p.ex. se déplace d’un point à un autre entre lesquels règne une tension

de 100 V , elle peut soit gagner soit perdre 100 J d’énergie.
La force de Coulomb étant conservative, le changement de l’énergie potentielle ne dépend

donc pas du chemin emprunté, mais uniquement des points de départ et d’arrivée.

2. Potentiel électrique.
2.1. Définition. S’il existe une tension de U V olt entre deux points A et B de l’espace, cette

tension représente la différence des potentiels électriques de chaque point: U = ∆V = VB −VA où
V est le potentiel électrique en un point.

Le potentiel en un seul point, p.ex. A, est défini par rapport à la terre qui, par définition,
possède un potentiel de zéro UA = VA − VT

On peut donc associer à chaque point de l’espace une valeur (non dirigée) représentant le
potentiel électrique à cet endroit. Etant donné que la direction ne joue aucun rôle, il s’agit d’un
champ scalaire et non pas d’un champ vectoriel.

2.2. Potentiel d’une charge ponctuelle. Le changement de l’énergie potentielle d’une charge q
se déplaçant d’un point P1 à un point P2 dans le voisinage d’une charge ponctuelle Q est donné
par :

∆Epot el = q · U = q(VP2 − VP1) = k · q ·Q ·
(

1

rP2

− 1

rP1

)
Il en suit que le potentiel à une distance r de la charge Q est

V (r) = k · Q
r

!"##$%&'(&)*&)+,-.&-%

Figure 18. Analogie gravitationnelle pour le changement d’énergie potentielle
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Remarque 4.1. Par définition,

εpot ele =
1

4πε0

Qq

‖~r‖
=

1

4πε0

Qq√
x2 + y2 + z2

Par conséquent,

~Fele = −grad(εpot el) = −~∇

(
1

4πε0

Qq√
x2 + y2 + z2

)
=

1

4πε0

Qq

‖~r‖3
~r

qui est bien répulsive si les charges ont le même signe et attractive dans le cas contraire.
Rappelons que l’énergie potentielle de gravitation est donnée par

εpot grav = −GMm

‖~r‖
= −G Mm√

x2 + y2 + z2

Par conséquent,

~Fgrav = −grad(εpot grav) = ~∇

(
G

Qq√
x2 + y2 + z2

)
= −G Qq

‖~r‖3
~r

qui est toujours attractive.

2.3. Plaques parallèles. Soit deux plaques parallèles conductrices séparées par du vide (ou de
l’air), que l’on charge de signes opposés. Le champ qui s’établit entre les deux plaques est uniforme,
c’est à dire qu’il est le même partout dans l’espace entre les plaques.

Pour déplacer une charge, (p.ex.) positive, contre le champ électrique d’une plaque à l’autre,
il faut exercer une force constante F sur la distance d séparant les deux plaques. Le champ est
toujours parallèle au déplacement.

∆Epot el = −AFel
= −qE · d · cos(180◦) = q · E · d = q · U ⇒ U = E · d

Figure 19. Champ entre deux plaques parallèles



Tension et potentiel électrique (page 22/69)

Figure 20. Particule chargée accélérée entre deux plaques parallèles

3. Accélération d’une charge.
Une particule chargée pénétrant dans le champ entre deux plaques peut être accélérée de

manière uniforme, dans ce cas l’énergie potentielle perdue représente le gain d’énergie cinétique

∆Ecin = −∆Epot
1

2
·m · v2 − 1

2
·m · v2

0 = |q · U |

v =

√
2 · |q · U |

m
+ v2

0

Remarquons que ce résultat est vrai même si le champ n’est pas uniforme. Ce résultat ne
dépend pas de la distance d qui sépare le pôle + du pôle -.
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4. Alessandro Volta 1745-1827.

Figure 21. Alessandro Volta et sa pile voltäıque

Figure 22. Article de Volta décrivant son invention





CHAPITRE 2

Fonctions à plusieurs variables

Les notes de cours qui suivent ne contiennent ni théorèmes ni démonstrations. Elles constituent
une introduction non formelle à l’analyse des fonctions à plusieurs variables destinée aux élèves
du collège de Genève en OS Physique-Application des mathématiques.

1. Dérivées partielles

Considérons, à titre d’exemple, la fonction f : R2 → R définie par

f(x, y) = (x2 + y2 − 1)2 + 1

Son graphe est une surface de R3. On peut visualiser son graphe avec Octave. L’exécution du
script

1 x = −1 . 1 : 0 . 1 : 1 . 1 ;
2 y = −1 . 1 : 0 . 1 : 1 . 1 ;

3 [ xx , yy]=meshgrid (x , y ) ;

4 zz=(xx.ˆ2+yy .ˆ2−1) .ˆ2+1;
5 surf ( xx , yy , zz )

6 axis ( [−1.1 1 .1 −1.1 1 .1 0 4 ] )
7 xlabel ( ’ x ’ )

8 ylabel ( ’ y ’ )

9 zlabel ( ’ z ’ )
10 view (66 ,26)

11 print exemple . png

donne la graphe de la figure 1.

Figure 1. Le graphe de la fonction f(x, y) = (x2 + y2 − 1)2 + 1.
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On définit la dérivée partielle de f par rapport à la variable x, que l’on note

∂f

∂x
ou ∂xf

comme la dérivée de f obtenue en considérant y comme une constante numérique:

(∂xf)(x, y) = 2(x2 + y2 − 1)2x

De même, la dérivée partielle de f par rapport à la variable y est obtenue en dérivant f par
rapport à y en considérant x comme une constante numérique:

(∂y)f(x, y) = 2(x2 + y2 − 1)2y

2. Gradient

On définit le gradient de f , que l’on note

grad(f) ou ~∇f

comme la fonction de R2 dans R2 donnée par

(~∇f)(x, y) =

(
(∂xf)(x, y)
(∂yf)(x, y)

)
Pour notre exemple, nous obtenons

(~∇f)(x, y) =

(
2(x2 + y2 − 1)2x
2(x2 + y2 − 1)2y

)
= 4(x2 + y2 − 1)

(
x
y

)
Une courbe de niveau est une fonction dérivable ~c : I ⊆ R → R2 telle que f(~c(t)) est

constante sur I, c’est-à-dire

0 =
d

dt
f(~c(t)) =

d

dt
f(c1(t), c2(t)) = (∂xf)(~c(t))ċ1(t) + (∂yf)(~c(t))ċ2(t)

=

(
(∂xf)(~c(t))
(∂yf)(~c(t))

)
•
(
ċ1(t)
ċ2(t)

)
= (~∇f)(~c(t)) • ~̇c(t)

ce qui montre que ~∇f est un vecteur perpendiculaire aux courbes de niveau.
Pour représenter graphiquement une fonction ~g de R2 dans R2, on peut afficher en quelques

points (x; y) choisis du plan une flèche dont les coordonnées sont les coordonnées de ~g(x, y) et
dont l’origine est placée au point (x; y).

Par exemple, le script Octave

1 x = −1 . 3 : 0 . 2 : 1 . 3 ;
2 y = −1 . 3 : 0 . 2 : 1 . 3 ;

3 [ xx , yy]=meshgrid (x , y ) ;

4 vx=4∗(xx .ˆ2+yy .ˆ2−1) .∗ xx ;
5 vy=4∗(xx .ˆ2+yy .ˆ2−1) .∗ yy ;

6 quiver ( xx , yy , vx , vy , 5 )

7 axis ( [−1.5 1 .5 −1.5 1 . 5 ] )
8 xlabel ( ’ x ’ )

9 ylabel ( ’ y ’ )
10 print exemplegrad . png
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donne le graphique de la figure 2
Dans notre exemple, les courbes de niveau sont des cercles. Le gradient est donc bien en tout

point perpendiculaire à une courbe de niveau.
Le gradient (~∇)(f)(x, y) est nul si f(x, y) est un minimum ou un maximum local. De plus, il

“indique la direction de la plus forte pente”.
Dans notre exemple, f admet un maximum local en (0; 0) et des minimas locaux sur le cercle

de rayon 1 centré à l’origine. Or

(~∇f)(x, y) = 0 ⇔ x = 0 = y ou x2 + y2 = 1

Un exemple bien connu de fonction de R2 dans R est une carte de géographie qui donne
l’altitude de chaque point (x; y).

3. Intégrale curviligne

Soit ~c : [a, b]→ R3 continûment dérivable et ~F : R2 → R2 continue. Alors, pour N un “grand”
nombre entier

A~F ≈
N−1∑
i=0

(~c(a+ (i+ 1)δ)− ~c(a+ iδ)) • ~F (~c(a+ iδ)) où δ =
b− a
N

donne le travail A~F de la force ~F pour un déplacement du point A = ~c(a) au point B = ~c(b) le
long de la courbe ~c (voir figure 3). Or

N−1∑
i=0

(~c(a+ (i+ 1)δ)− ~c(a+ iδ)) • ~F (~c(a+ iδ)) =
N−1∑
i=0

~c(a+ (i+ 1)δ)− ~c(a+ iδ)

δ
• ~F (~c(a+ iδ))δ

Figure 2. Le gradient de la fonction f(x, y) = (x2 + y2 − 1)2 + 1.
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Figure 3. Le travail d’une force ~F .

qui est, si N est “suffisamment” grand (et donc δ “suffisamment petit”), une bonne approximation
de l’aire délimitée par le graphe de la fonction de R dans R définie par

~̇c(t) • ~F (~c(t))

l’axe des abscisses et les droites verticales t = a et t = b (en comptant négativement l’aire des
surfaces en-dessous de l’axe des abscisses). En d’autres termes, le travail est donné par l’intégrale

A~F =

∫ b

a

~̇c(t) • ~F (~c(t)) dt

La formule donnée ci-dessus dépend uniquement de la courbe reliant ~c(a) à ~c(b) (c’est-à-dire
de C = ~c([a, b])). Elle ne dépend pas de la paramétrisation de C. En effet, soit s : [t0, t1] → [a, b]

continûment dérivable. Alors, ~h(t) = ~c(s(t)) est une autre paramétrisation de C. En d’autres

termes, ~h([t0, t1]) = C. De plus,

~̇h(t) = ~̇c(s(t)) · ṡ(t)

Alors, par la formule d’intégration par changement de variable, il vient∫ t1

t0

~̇h(t) • ~F (~h(t)) dt =

∫ t1

t0

~̇c(s(t)) · ṡ(t) • ~F (~c(s(t))) dt =

∫ b

a

~̇c(s) • ~F (~c(s)) ds
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Soit CA→B une courbe de l’espace reliant A à B. Il suit de ce qui précède, que nous pouvons
définir ∫

CA→B

~F • d~l =

∫ b

a

~F (~c(t)) • ~̇c(t) dt

pour une paramétrisation quelconque ~c : [a, b]→ R3 de CA→B.

Si la force ~F est conservative, c’est-à-dire s’il existe une fonction U : R3 → R continûment
dérivable telle que

~F (~x) = −(~∇U)(~x)

(dans ce cas la fonction U est appelée le potentiel) alors

A~F =

∫ b

a

~̇c(t) • ~F (~c(t)) dt = −
∫ b

a

~̇c(t) • (~∇U)(~c(t)) dt

= −
∫ b

a

d

dt
U(~c(t)) dt = − (U(~c(b))− U(~c(a))) = U(A)− U(B)

ce qui montre que le travail de la force ~F ne dépend pas du chemin reliant A = ~c(a) à B = ~c(b)

4. Généralisations du théorème fondamental du calcul différentiel

Définition 4.1. On définit

~∇ =

∂x∂y
∂z


Soit ~A : R3 → R3. On définit

(1) la divergence de ~A par

div( ~A) = ~∇ • ~A = ∂xA+ ∂yA+ ∂zA

(2) le rotationnel de ~A par

rot( ~A) = ~∇× ~A =

∂yA3 − ∂zA2

∂zA1 − ∂xA3

∂xA2 − ∂yA1


1. Formule de Green.
Nous commençons par la formule de Green. Soit D un ouvert de R2 x et y simple, c’est-à-

dire défini par deux intervalles ouverts Ix et Iy et 4 fonctions continûment dérivables x± et y± de
R dans R telles que

D =
{

(x, y) ∈ R2
∣∣∣ x ∈ Ix, y−(x) < y < y+(x)

}
=
{

(x, y) ∈ R2
∣∣∣ y ∈ Iy, x(y) < y < x+(y)

}
On définit le bord ∂D de D en remplaçant les inégalités par des égalités. Soit ~A une fonction
continûment dérivable de R2 dans R2. Alors (formule de green),∫

D

(
∂A2

∂x
− ∂A1

∂y

)
dS =

∫
∂D	

~A • d~l
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En effet, en vertu du théorème de Fubini et du théorème fondamental du calcul différentiel,∫
D

(
∂A2

∂x
− ∂A1

∂y

)
dS

=

∫
y∈Iy

(∫ x+(y)

x(y)

∂A2

∂x
dx

)
dy −

∫
x∈Ix

(∫ y+(x)

y(x)

∂A1

∂y
dy

)
dx

=

∫
y∈Iy

(A2(x+(y), y)− A2(x−(y), y)) dy −
∫
x∈Ix

(A1(x, y+(x))− A1(x, y−(x))) dx

Par définition, ∫
∂D	

~A • d~l =

∫
∂D	

A1 d~l1 +

∫
∂D	

A2 d~l2

Notons Ix =]g, d[ et

~v±(t) =

(
t

y±(t)

)
⇒ ~̇v±(t) =

(
1

ẏ±(t)

)
, ~hg\d(t) =

(
g\d
t

)
⇒ ~̇hg\d(t)

(
0
1

)
Avec ces notations,∫

∂D	
A1 d~l1 =

∫ d

g

A1(x, y−(x))~̇v−(x)1 dx+

∫ y+(d)

y(d)

A1(d, y)~̇hd(y)1 dy

+

∫ g

d

A1(x, y+(x))~̇v+(x)1 dx+

∫ y−(g)

y+(g)

A1(g, y)~̇hg(y)1 dy

=

∫ d

g

(A1(x, y−(x))− A1(x, y+(x))) dx

De manière similaire, on montre que∫
∂D	

A2 d~l2 =

∫
y∈Iy

(A2(x+y), y)− A2(x−(y), y)) dy

ce qui achève la démonstration de la formule de Green.

2. Formule de Stokes.
Soit S une surface de R3. Pour simplifier, nous supposons qu’il existe un ouvert x et y-simple

D de R2 et une fonction
~σ : R2 → R3

(u, v) 7→ σ(u, v)

deux fois continûment dérivable sur D, injective sur D telle que

S = σ(D)

(σ est une paramétrisation de S). Nous supposons également que ‖∂u~σ × ∂v~σ‖ 6= 0 pour tout
(u, v) ∈ D et que ∂u~σ×∂v~σ

‖∂u~σ×∂v~σ‖ est continue sur D.

Notons encore γ : [0, 1]→ ∂D une paramétrisation du bord de D dans le sens trigonométrique
comme plus haut.
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Par exemple, pour une demi-sphère de rayon R centrée en l’origine, on peut prendre

D =
{

(u, v) ∈ R2
∣∣∣ u2 + v2 < R

}
le disque ouvert centré en l’origine de rayon Ret

σ(u, v) =
√
R2 − u2 − v2

Une demi sphère de rayon 2:

1 t =0:2∗pi /20 :2∗ pi ;

2 r = 0 : 0 . 1 : 2 ;
3 [ tt , r r ]=meshgrid ( t , r ) ;

4 xx=r r .∗ cos ( t t ) ;

5 yy=r r .∗ sin ( t t ) ;
6 zz=sqrt (abs(4−xx.ˆ2−yy . ˆ 2 ) ) ;

7 surf ( xx , yy , zz )

8 axis ([−2 2 −2 2 −2 2 ] , ” equal ” )
9 print demisphere . png

Soit ~A une fonction de R3 dans R3 continûment dérivable. Alors, on a l’égalité (formule de
Stokes) ∫

S

(
~∇× ~A

)
• d~S =

∫
∂S

~A • d~l

En effet, notons

~ξ(t) =

σ1(u0 + t, v0)
σ2(u0 + t, v0)
σ3(u0 + t, v0)

 et ~υ(t) =

σ1(u0, v0 + t)
σ2(u0, v0 + t)
σ3(u0, v0 + t)


alors l’élément de surface est donné par

d~S(u0, v0) = ~̇ξ × ~̇υ =


∂σ1
∂u

(u0, u0)
∂σ2
∂u

(u0, v0)
∂σ3
∂u

(u0, v0)

×


∂σ1
∂v

(u0, u0)
∂σ2
∂v

(u0, v0)
∂σ3
∂v

(u0, v0)

 =


∂σ2
∂u

∂σ3
∂v
− ∂σ3

∂u
∂σ2
∂v

∂σ3
∂u

∂σ1
∂v
− ∂σ1

∂u
∂σ3
∂v

∂σ1
∂u

∂σ2
∂v
− ∂σ2

∂u
∂σ1
∂v


et ∫

S

(
~∇× ~A

)
• d~S =

∫
D


∂A3(~σ(u,v))

∂y
− ∂A2(~σ(u,v))

∂z

∂A1(~σ(u,v))
∂z

− ∂A3(~σ(u,v))
∂x

∂A2(~σ(u,v))
∂x

− ∂A1(~σ(u,v))
∂y

 •
dS1(u, v)
dS2(u, v)
dS2(u, v)

 du dv

=

∫
S

(
∂A3(~σ(u, v))

∂y
− ∂A2(~σ(u, v))

∂z

)
dS1(u, v) du dv

+

∫
S

(
∂A1(~σ(u, v))

∂z
− ∂A3(~σ(u, v))

∂x

)
dS2(u, v) du du

+

∫
S

(
∂A2(~σ(u, v))

∂x
− ∂A1(~σ(u, v))

∂y

)
dS3(u, v) du dv

= R1 +R2 +R3
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où

R1 =

∫
S

(
∂A1(~σ(u, v))

∂z
dS2(u, v)− ∂A1(~σ(u, v))

∂y
dS3(u, v)

)
du dv

R2 =

∫
S

(
∂A2(~σ(u, v))

∂x
dS3(u, v)− ∂A2(~σ(u, v))

∂z
dS1(u, v)

)
du dv

R3 =

∫
S

(
∂A3(~σ(u, v))

∂y
dS1(u, v)− ∂A3(~σ(u, v))

∂x
dS2(u, v)

)
du dv

Calculons, par exemple,

R1 =

∫
S

(
∂A1(~σ(u, v))

∂z
dS2(u, v)− ∂A1(~σ(u, v))

∂y
dS3(u, v)

)
du dv

∫
S

(
∂A1

∂z

(
∂σ3

∂u

∂σ1

∂v
− ∂σ1

∂u

∂σ3

∂v

)
− ∂A1

∂y

(
∂σ1

∂u

∂σ2

∂v
− ∂σ2

∂u

∂σ1

∂v

))
du dv

Par ailleurs,∫
∂S

~A • d~l =

∫ 1

0

~A(~σ(~γ(t))) • d
dt

(~σ ◦ ~γ) (t) dt =

∫ 1

0

A1(~σ(~γ(t)))

(
∂σ1

∂u
γ̇1(t) +

∂σ1

∂v
γ̇2(t)

)
dt

+

∫ 1

0

A2(~σ(~γ(t)))

(
∂σ1

∂u
γ̇2(t) +

∂σ2

∂v
γ̇2(t)

)
dt+

∫ 1

0

A3(~σ(~γ(t)))

(
∂σ1

∂u
γ̇3(t) +

∂σ3

∂v
γ̇2(t)

)
dt

Calculons par exemple∫ 1

0

A1(~σ(~γ(t)))

(
∂σ1

∂u
γ̇1(t) +

∂σ1

∂v
γ̇2(t)

)
dt =

∫ 1

0

(
A1(~σ(~γ(t)))∂σ1

∂u

A1(~σ(~γ(t)))∂σ1
∂v

)
•
(
γ̇1(t)
γ̇2(t)

)
dt

=

∫
∂D	

(
A1(~σ(~γ(t)))∂σ1

∂u

A1(~σ(~γ(t)))∂σ1
∂v

)
• d~l Green=

∫
D

(
∂u

(
A1(~σ(u, v))

∂σ1

∂v

)
− ∂v

(
A1(~σ(u, v))

∂σ1

∂u

))
du dv

=

∫
D

((
∂A1

∂x

∂σ1

∂u
+
∂A1

∂y

∂σ2

∂u
+
∂A1

∂z

∂σ3

∂u

)
∂σ1

∂v
−
(
∂A1

∂x

∂σ1

∂v
+
∂A1

∂y

∂σ2

∂v
+
∂A1

∂z

∂σ3

∂v

)
∂σ1

∂u

)
dS

=

∫
D

(
∂A1

∂z

(
∂σ3

∂u

∂σ1

∂v
− ∂σ3

∂v

∂σ1

∂u

)
− ∂A1

∂y

(
∂σ2

∂v

∂σ1

∂u
− ∂σ2

∂u

∂σ1

∂v

))
du dv = R1

On démontre de la même manière les égalités pour R2 et R3, ce qui achève la démonstration de
la formule Stokes.

Exemple 4.2. Notons

~r =

xy
z

 et ~A(~r) =

−yx
0

 et Σ =
{
~r ∈ R3

∣∣∣ z = 0 et ‖~r‖ =
√
x2 + y2 ≤ R

}
avec ~nΣ =

0
0
1


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La surface Σ est un disque d’orientation ~nΣ. Alors

∂Σ =
{
~r ∈ R3

∣∣∣ z = 0 et ‖~r‖ =
√
x2 + y2 = R

}
et

~∇× ~A =

∂x∂y
∂z

×
−yx

0

 =

0
0
2

 ⇒
∫

Σ

(~∇× ~A) • d~S = 2πR2

Par ailleurs, ∫
∂Σ	

~A • d~l =

∫
∂Σ

‖ ~A‖ dl = R2πR = 2πR2

car sur le bord du disque,

~r = R

cos(α)
sin(α)

0

 ⇒ ~A(~r) = R

− sin(α)
cos(α)

0

 ⇒ ‖ ~A‖ = R

3. Formule d’Ostrogradsky.
Considérons le cube

Ω =


xy
z

 ∣∣∣ − ε ≤ x ≤ ε et − ε ≤ y ≤ ε et − ε ≤ z ≤ ε


Notons les faces du cubes par

∂Ωx± =


±εy
z

 ∣∣∣ − ε ≤ y ≤ ε et − ε ≤ z ≤ ε


∂Ωy± =


 x
±ε
z

 ∣∣∣ − ε ≤ x ≤ ε et − ε ≤ z ≤ ε


∂Ωz± =


 x
y
±ε

 ∣∣∣ − ε ≤ x ≤ ε et − ε ≤ y ≤ ε


et le bord du cube par

∂Ω = ∂Ωx+ ∪ ∂Ωx− ∪ ∂Ωy+ ∪ ∂Ωy− ∪ ∂Ωz+ ∪ ∂Ωz−

Pour tout point du bord du cube, définissons le vecteur normal à la surface par (voir figure 4)

~r ∈ ∂Ω ⇒ ~n(~r) =



~e1 si ~r ∈ ∂Ωx+

−~e1 si ~r ∈ ∂Ωx−

~e2 si ~r ∈ ∂Ωy+

−~e2 si ~r ∈ ∂Ωy−

~e3 si ~r ∈ ∂Ωz+

−~e3 si ~r ∈ ∂Ωz−
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où (~e1, ~e2, ~e3) désigne la base canonique

~e1 =

1
0
0

 , ~e2 =

0
1
0

 , ~e3 =

0
0
1



Figure 4.

Soit ~A : R3 → R3. Alors,

∫
Ω

div( ~A) dV =

∫
Ω

(∂xA1 + ∂yA2 + ∂zA3) dV =

∫
Ω

∂xA1 dV +

∫
Ω

∂yA2 dV +

∫
Ω

∂zA3 dV

=

∫ ε

y=−ε


∫ ε

z=−ε

(∫ ε

x=−ε
∂xA1 dx

)
︸ ︷︷ ︸
=A1(ε,y,z)−A1(−ε,y,z)

dz

 dy

+

∫ ε

x=−ε


∫ ε

z=−ε

(∫ ε

y=−ε
∂yA2 dy

)
︸ ︷︷ ︸
=A2(x,ε,z)−A2(x,−ε,z)

dz

 dx

+

∫ ε

x=−ε


∫ ε

y=−ε

(∫ ε

z=−ε
∂zA3 dz

)
︸ ︷︷ ︸
=A3(x,y,ε)−A3(x,y,−ε)

dy

 dx
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=

∫ ε

y=−ε

(∫ ε

z=−ε

~A(ε, y, z) • ~e1 dz

)
dy −

∫ ε

y=−ε

(∫ ε

z=−ε

~A(−ε, y, z) • ~e1 dz

)
dy

=

∫ ε

x=−ε

(∫ ε

z=−ε

~A(x, ε, y, z) • ~e2 dz

)
dx−

∫ ε

x=−ε

(∫ ε

z=−ε

~A(x,−ε, z) • ~e2 dz

)
dx

=

∫ ε

x=−ε

(∫ ε

y=−ε

~A(x, y, ε) • ~e3 dy

)
dx−

∫ ε

x=−ε

(∫ ε

y=−ε

~A(x, y,−ε) • ~e3 dy

)
dx

=

∫
∂Ω

~A • ~n dS︸︷︷︸
=:d~S

=

∫
∂Ω

~A • d~S

La généralisation de cette égalité à un sous-ensemble (quelconque mais suffisamment régulier) Ω
de R3 est connue sous le nom de formule d’Ostrogradsky∫

Ω

div( ~A) dV =

∫
∂Ω

~A • d~S

Exemple 4.3. Notons

~r =

xy
z

 et ~A(~r) = ~r et Ω =
{
~r ∈ R3

∣∣∣ ‖~r‖ =
√
x2 + y2 + z2 ≤ R

}
Alors

∂Ω =
{
~r ∈ R3

∣∣∣ ‖~r‖ =
√
x2 + y2 + z2 = R

}
et

~∇ • ~A = 3 et

∫
Ω

(~∇ • ~A) dV = 3
4

3
πR3 = 4πR3

Par ailleurs, ∫
∂Ω

~Ad~S =

∫
∂Ω

‖ ~A‖ dS = R4πR2 = 4πR3





CHAPITRE 3

Forces conservatives

1. Définition

Une force ~F (~r) est dite conservative si elle dérive d’un potentiel, c’est-à-dire s’il existe une
fonction U : R3 → R telle que

~F (~r) = −(~∇U)(~r) = −

(∂xU)(~r)
(∂yU)(~r)
(∂zU)(~r)


2. Travail

Le travail d’une force conservative ~F ne dépend pas du chemin parcouru. En effet, notons ~r(t)
l’horaire d’une masse ponctuelle. Notons A = ~r(t0), B = ~r(t1) (avec t0 < t1) et C la trajectoire de

m entre A et B, c’est-à-dire, C = ~r([t0, t1]). Alors, le travail de ~F le long de C est donné par

A~F =

∫ B

A

~F • d~l =

∫ t1

t0

~F (~r(t)) • ~̇r dt = −
∫ t1

t0

(~∇U)(~r(t)) • ~̇r dt = −
∫ t1

t0

d

dt
U(~r(t)) dt

= −(U(~r(t1))− U(~r(t0))) = −(U(B)− U(A))

qui est indépendant du chemin C reliant A à B.
Réciproquement, si le travail d’une force ne dépend pas
du chemin parcouru, on peut montrer, sous certaines hy-
pothèses, qu’elle est conservative. L’étude dans un cadre
plus général de cette implication a donné lieu à une théorie
mathématique connue sous le nom de cohomologie de de
Rham qui a été développée par le mathématicien (et alpin-
iste !) vaudois Georges de Rham (Roche 1903 - Lausanne
1990). Georges de Rham

3. Exemples et contre-exemples

1. La gravitation.
Considérons deux masses M et m sphériques, homogènes et isotropes (comme c’est le cas en

bonne approximation, par exemple, pour la Terre, le Soleil, la Lune, ...). Rappelons que la force
de gravitation exercée par la masse M sur la masse m est donnée par

~FM/m = −GMm

‖~r‖2

~r

‖~r‖
= −GMm

‖~r‖3
~r

où ~r désigne la position de la masse m relativement à un référentiel attaché au centre de la masse
M .
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On définit le champ de gravité de M par

~gM(~r) = −G M

‖~r‖2

~r

‖~r‖

Ainsi,

~FM/m = m~gM(~r)

On définit le potentiel de gravitation de M par

V (~r) = −G M

‖~r‖

et l’énergie potentielle de gravitation de m par

U = mV (~r)

Un calcul simple donne

(∂xV ) = ∂x

(
−G M√

x2 + y2 + z2

)
= ∂x

(
−GM

(
x2 + y2 + z2

)− 1
2

)

= GM
1

2

(
x2 + y2 + z2

)− 3
2 (∂xx

2) = GM
1

2

1(√
x2 + y2 + z2

)3 2x = G
M

‖~r‖3
x

Par conséquent,

−(~∇V )(~r) = −

(∂xV )(~r)
(∂yV )(~r)
(∂zV )(~r)

 = −

G
M
‖~r‖3x

G M
‖~r‖3y

G M
‖~r‖3 z

 = −G M

‖~r‖3

xy
z

 = −G M

‖~r‖3
~r = ~g(~r)

et

~FM/m = −(~∇U)

ce qui montre que la force de gravitation est conservative.

Remarque 3.1. L’énergie potentielle de gravitation (qui est négative) d’une masse m en un
point A dans le champ de gravitation d’une masse M est égale au travail de la force de gravitation
pour un chemin CA→∞ allant du point A à l’infini:∫

CA→∞

~FM/m • d~l = −
∫
CA→∞

(~∇U) • d~l = −
(
U(~r)

∣∣∣∣∞
A

)
= −U(∞)︸ ︷︷ ︸

=0

−(−U(A) = U(A)

En d’autres termes, l’énergie potentiel est égale à l’opposé du travail qu’il faut fournir pour
amener m de A à l’infini.



Energie mécanique (page 39/69)

2. La force électrique.
D’après la loi de Coulomb, la force qu’une charge électrique q1 exerce sur une charge q2 est

donnée par

~Fq1/q2 =
1

4πε0

q1 · q2

‖~r‖2

~r

‖~r‖
où ~r = ~r2 − ~r1

et où ~r1 et ~r2 sont les positions des charges q1 et q2. Hormis les constantes, l’expression mathé-
matique de cette force est identique à celle pour la force de gravitation. Par conséquent, elle est
aussi conservative. En effet,

~Fq1/q2 = −~∇Vq1 · q2 où Vq1 =
1

4πε0

· q1

‖~r‖

3. Forces de frottement.
Les forces de frottement ne sont pas conservatives car leur travail dépend de la trajectoire (de

sa longueur). Par exemple, le travail d’une force de frottement constante est donné par

Afrot = ‖~Ffrot‖ · L

où L est la longueur de la trajectoire.

4. Energie mécanique

Définition 4.1. Pour une masse m subissant une force conservative ~F = −~∇U , on définit
l’énergie mécanique par

Emec =
1

2
m‖~v‖2 + U

c’est-à-dire l’énergie cinétique plus l’énergie potentielle.

Théorème 4.2. Pour une masse m subissant une force conservative et éventuellement des
forces normales à sa vitesse en tout point de sa trajectoire (i.e. perpendiculaires à sa trajectoire),
l’énergie mécanique est conservée: pour tous les temps t0 < t1,

1

2
m‖~v(t0)‖2 + U(~r(t0)) =

1

2
m‖~v(t1)‖2 + U(~r(t1))

Démonstration. En dérivant par rapport au temps, on trouve

dEmec
dt

=
1

2
m

(
d

dt

(
vx(t)

2
)

+
d

dt

(
vy(t)

2
)

+
d

dt

(
vz(t)

2
))

+
d

dt
U(x(t), y(t), z(t))

=
1

2
m (2vx(t)v̇x(t) + 2vy(t)v̇y(t) + 2vz(t)v̇z(t))

+(∂xU) · ẋ(t) + (∂yU) · ẏ(t) + (∂zU) · ż(t)

= m~̇v(t) • ~v(t) + (~∇U) • ~v(t) = m~a • ~v − ~F • ~v = ~Fres • ~v − ~F • ~v

=
(
~F + ~F⊥

)
• ~v − ~F • ~v = ~F • ~v + ~F⊥ • ~v︸ ︷︷ ︸

=0

−~F • ~v = 0

ce qui montre que l’énergie mécanique est constante au cours du mouvement. �
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Rappelons le théorème de l’énergie cinétique:

Théorème 4.3. Le travail de la force résultante agissant sur une masse m est égal à la
variation de son énergie cinétique: soit CA→B la trajectoire d’une masse m allant d’un point A à
un point B et subissant une force résultant ~Fres. Alors

A~Fres
=

∫
CA→B

~Fres • d~l =
1

2
m‖~vB‖2 − 1

2
m‖~vA‖2

Démonstration. Soit ~r : [t0, t1]→ R3 (2 fois continûment dérivable) l’horaire de la masse m
(en particulier ~r([t0, t1]) = CA→B avec ~r(t0) = A et ~r(t1) = B). En vertu du théorème fondamental
du calcul différentiel, on trouve

A~Fres
=

∫
CA→B

~Fres • d~l =

∫ t1

t0

~Fres(t) • ~̇r(t) dt =

∫ t1

t0

m~a(t) • ~v(t) dt =

∫ t1

t0

m
1

2

d

dt
(~v(t) • ~v(t)) dt

=

∫ t1

t0

d

dt

(
1

2
m‖~v(t)‖2

)
dt =

1

2
m‖~v(t1)‖2 − 1

2
m‖~v(t0)‖2

�

De ce qui précède, nous déduisons que

Théorème 4.4. La variation de l’énergie mécanique d’une masse m subissant des forces
conservatives, des forces qui ne travaillent pas (ı.e. perpendiculaires à la trajectoire en tout point)
et des forces non conservatives est égale au travail des forces non conservatives: soit CA→B la
trajectoire d’une masse m subissant une force conservative ~F⊥ = −~∇U , une force qui ne travaille

pas ~f⊥ et une force non conservative ~F‖ (i.e. ~Fres = ~F⊥ + ~f⊥ + ~F‖). Alors

∆Emec = EmecB − EmecA = A~F‖
=

∫
CA→B

~F‖ • d~l

Démonstration. En vertu du théorème de l’énergie cinétique, il vient

1

2
m‖~vB‖2 − 1

2
m‖~vA‖2 =

∫
A→B

~Fres • d~l =

∫
A→B

(
~F⊥ + ~f⊥ + ~F‖

)
• d~l

=

∫
A→B

~F⊥ • d~l︸ ︷︷ ︸
U(B)−U(A)

+

∫
A→B

~f⊥ • d~l︸ ︷︷ ︸
=0

+

∫
A→B

~F‖ • d~l = − (U(B)− U(A)) +

∫
A→B

~F‖ • d~l

⇒
∫
A→B

~F‖ • d~l =
1

2
m‖~vB‖2 − 1

2
m‖~vA‖2 + U(B)− U(A) = EmecB − EmecA

�



CHAPITRE 4

Equations de Maxwell

En 1865, le physicien écossais James Clerk Maxwell (1831-1879) publie sous la forme d’un
système d’équations (initialement 20 équations à 20 inconnues, réduit par la suite par Heaviside à
un système de 4 équations que nous verrons plus loin) une synthèse des diverses lois expérimentales
concernant l’électricité et le magnétisme établies par ses prédécesseurs.

1. Champs électrique et magnétique

Les atomes (∼ 1 angström=0.1 nm) sont électriquement neutres. Ils sont composés de partic-
ules neutres (les neutrons dans le noyau) et de particules chargées: les protons (+) et les électrons
(-). Un courant est un mouvement de charges (par exemple d’électrons). Un courant de 1 ampère
(A) correspond à un débit de charges de 1 coulomb (C) par seconde. La charge de l’électron et du
proton vaut (au signe près) 1.602 ·10−19 C. Il faut donc 1

1.602
·1019 ≈ 6.24 ·1018 électrons pour faire

un coulomb et un débit de 6.24 · 1018 électrons par seconde pour faire un courant de 1 ampère.
Une particule de charge q se déplaçant à vitesse ~v dans un référentiel galiléen R subit une force

(dite de Lorentz) donnée par

~F = q
(
~E + ~v × ~B

)
où ~E est le champ électrique où se trouve la charge et ~B le champ magnétique.

2. Champ électrique

Le champ électrique est une propriété du vide. Il est décrit dans le référentiel d’inertie R
par une fonction

~E : R4 → R3

(~x, t) 7→ ~E(~x, t)

On mesure la valeur du champ électrique en ~x au temps t en plaçant une charge immobile q
de masse m en ~x au temps t et en mesurant son accélération ~a (si le champ de gravitation est
négligeable). Le champ électrique est donné par (il suffit de remplacer dans l’expression pour la

force de Lorentz ~v par ~0 et ~F par m~a):

~E(~x, t) =
m

q
~a

Les unités du champ électrique sont: [E]=1 volt
m

= 1 V
m

= 1N
C

= 1
kg m

s2

A·s = 1kg·m
A·s3

3. Effet du champ électrique sur la matière

3.1. Matière conductrice.
Il s’agit de matière contenant des charges libres, comme par exemple

• les métaux: 1 à 2 électrons libres par atome (Ex: Cu, Ag, Au),
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Effet du champ électrique sur la matière (page 42/69)

• les électrolytes: liquides contenant des ions (Ex: Na+, Cl−),
• les gaz ionisés (Ex: Ne+)

Lorsque l’on place un conducteur dans un champ électrique ~Eext, il se produit un phénomène
de polarisation. Les charges + s’accumulent sur une face du conducteur et les charges - sur la face
opposée. Il apparâıt alors dans le conducteur un champ ~E ′ qui s’oppose au champ ~Eext et qui fini
par le compenser exactement. Le champ résultant ~E est alors nul

~E = ~Eext + ~E ′ = ~0

et la séparation des charges s’arrête. Il y a équilibre. Ce phénomène est illustré sur la figure
1. Les symboles � représentent les électrons libres. La source du champ ~E ′ sont les charges de
polarisation −Q et +Q.

Figure 1. Effet d’un champ électrique sur la matière conductrice. (Dessin: Collège de Candolle)

Le phénomène de polarisation a plusieurs conséquences.

(1) A l’intérieur d’un conducteur (plein ou creux) en équilibre électrique (pas de charges en
mouvement), le champ électrique est nul (c’est la cage de Faraday).

(2) A la surface d’un conducteur, le champ électrique est normal à sa surface, car s’il y
avait une composante tangentielle, alors les charges se déplaceraient sur la surface du
conducteur et l’équilibre ne serait pas atteint.

(3) Toute la charge électrique d’un conducteur en équilibre est localisée à sa surface. Il n’y a
donc pas de charge à l’intérieur qui est accumulée.

Les charges + et - se séparant dans un conducteur créent un champ en dehors qui se super-
pose au champ extérieur et le déforme (voir figure 2, gauche). Cette déformation du champ est
particulièrement évidente pour un conducteur comportant une pointe. La densité des lignes de
champ est alors importante sur la pointe: c’est l’effet pointe (voir figure 2, droite).

Figure 2. A gauche: déformation du champ par une sphère métallique placée dans
un champ électrique uniforme. A droite: effet pointe. (Dessin: Collège de Candolle)

3.2. Matière isolante.
Il s’agit de matière ne contenant pas (ou très peu) de charges libres. On la désigne généralement

par “matière diélectrique”. L’influence du champ électrique va donc se manifester sur des charges
liées, soit des couples de charges + et -.
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Considérons pour commencer l’action du champ sur un système simple: le dipôle (voir figure

3). Si le champ est uniforme, les forces ~F+ et ~F− sont égales en direction et en intensité et le
dipôle est sollicité par un couple de forces (un moment) qui vaut (relativement au centre de masse
du dipôle):

~M = ~l × ~F+ = q~l × ~E = ~p× ~E

où

~p = q~l

est appelé le moment dipolaire électrique. Remarquons que

‖ ~M‖ = ql‖ ~E‖ sin(α)

Le moment ~M agissant sur le dipôle a tendance à l’orienter parallèlement au champ ~E. Quand
le dipôle est aligné avec le champ électrique, les forces électriques déforment le dipôle, c’est-à-dire
augmentent la distance entre les charges. Si la distance l varie, alors le moment dipolaire ~p varie
aussi.

Figure 3. Effet du champ sur un dipôle. (Dessin: Collège de Candolle)

Si le champ ~E n’est pas uniforme, par exemple s’il crôıt dans le sens des lignes de champ, il
découle que ‖~F+‖ > ‖~F−‖ et le dipôle est entrâıné dans le sens du champ. Le dipôle est toujours
entrâıné dans le sens où le champ augmente en intensité (là où les lignes de champ se resserrent,
voir figure 4).

Figure 4. Dipôle dans un champ non uniforme. (Dessin: Collège de Candolle)

Quand un atome est placé dans un champ électrique, il devient polarisé et acquiert un mo-
ment dipolaire électrique induit par la direction du champ. Ceci résulte de la perturbation de la
répartition des électrons autour du noyau causée par le champ électrique.

Beaucoup de molécules possèdent un moment dipolaire permanent (voir figure 5). Quand une
molécule possède un moment dipolaire permanent, elle tend à s’orienter parallèlement au champ
électrique en raison du couple auquel elle est soumise.
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4. Champ magnétique

De même, le champ magnétique est une propriété du vide. Il est décrit par une fonction

~B : R4 → R3

(~x, t) 7→ ~B(~x, t)

On mesure la direction du champ magnétique en ~x au temps t
en plaçant en ~x au temps t une boussole. L’intensité du champ
magnétique peut se mesurer par exemple en plaçant une charge q
de masse m avec une vitesse ~v parallèle au champ électrique et en
mesurant le rayon de courbure r de sa trajectoire (le rayon du cercle
osculateur). Dans cette situation, la force centripète subie par la

charge est donnée par (en notant v = ‖~v‖, B = ‖ ~B‖ et α l’angle

entre ~v et ~B)

‖m~a− q ~E‖ = |q|‖~v × ~B‖ = m
v2

r
= |q sin(α)|vB ⇒ B =

m

|q|
v

r| sin(α)|

Finalement, le sens du champ magnétique, est déterminé par la “règle de la main droite” ! Les

unités du champ électrique sont: [B]=1 tesla=1 T=1 N
Cm

s
= 1

kg m
s2

s

A·s·m = 1 kg
A·s2 . De plus, 1 T=104

gauss (G). Par exemple, le champ magnétique terrestre vaut ∼0.5 G et le champ principal de
l’IRM des HUG vaut 3 T.

5. Densités de charge et de courant

Dans un référentiel galiléen R, on note ρ la densité de charge (unités: C
m3 ) et ~j la densité

de courant (unités: A
m2 ): la charge électrique q contenue dans une partie V de l’espace est donnée

par

q =

∫
V

ρ(~x)dV

et le courant I traversant une surface S est donné par

I =

∫
S

~j(~x) • d~S

Remarque 5.1. Par convention, le courant va de la borne positive d’un générateur à la borne
négative. Quand les porteurs de charges sont des électrons, ceux-ci se déplacent dans le sens
contraire du courant. Le vecteur ~j indique le sens des charges positives.

Figure 5. Exemples de molécules ayant un moment dipolaire permanent: HCl
(p ≈ 3.43 · 10−30C ·m) à gauche , H2O (p ≈ 6.2 · 10−30C ·m) à droite. (Dessin: Collège

de Candolle)
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Le courant électrique est défini comme le mouvement de charges électriques, typiquement à
l’intérieur d’un corps conducteur. L’intensité du courant I est le nombre de charges traversant
une section du corps en un intervalle de temps ∆t (voir figure 6):

I =
∆q

∆t
unité

C

s
= Ampères A

N.B. Pour des raisons historiques le courant conventionnel représente un mouvement de
charges positives. Etant donné que dans un solide il s’agit toujours du mouvement d’électrons
négatifs, les charges se déplacent en fait dans le sens opposé au courant conventionnel, comme on
peut voir sur le croquis suivant.

S

Figure 6. Courant électrique

Définition 5.2. Soit ~A : R3 → R3 et S une surface orientée. On définit Φ, le flux de ~A à
travers la surface orientée S, par

Φ =

∫
S

~A • d~S

Exemple 5.3. Considérons, à titre d’exemple, un fluide, de masse volumique constante ρ,
dans un tuyau. Soit ~v : R4 → R3 la fonction (appelée champ de vecteur vitesse) qui en chaque
point ~r = (x, y, z) du tuyau donne la vitesse ~v(~r, t) = ~v(x, y, z, t) de la particule du fluide se
trouvant en ce point ~r au temps t. Le flux de ~v à travers une surface S coupant le tuyau

Φ(t) =

∫
S

~v(t) • d~S

est proportionnel au débit:

D = ρΦ unités: kg/s

En effet, considérons la situation simple illustrée sur la figure 7. Le champ de vitesse est constant
et la surface est plane. En un temps t, la masse de fluide traversant la surface S vaut ρ · V où V
désigne le volume du parallélépipède de la figure 7. En d’autres termes

D =
ρvt sin(α)S

t
= ρ cos(β)Sv = ρ~S • ~v

où ~S est le vecteur normal à S dont la longueur est égale à la surface S. Remarquons que β = π
2
−α.



Equations de Maxwell (page 46/69)

6. Equations de Maxwell

Les équations de Maxwell sont données par

~∇ • ~E =
ρ

ε0

(M1)

~∇ • ~B = 0 (M2)

~∇× ~E = − ~̇B (M3)

c2~∇× ~B = ~̇E +
~j

ε0

(M4)

Le produit scalaire usuel est noté •, le produit vectoriel × et ~∇ désigne

~∇ =

∂x∂y
∂z


Par conséquent,

~∇ • ~E =
∂E1

∂x
+
∂E2

∂y
+
∂E3

∂z

~∇× ~B =


∂B3

∂y
− ∂B2

∂z

∂B1

∂z
− ∂B3

∂x

∂B2

∂x
− ∂B1

∂y


Finalement, c est la vitesse de la lumière dans le vide

c = 299′792′458 ≈ 3 · 108 m/s

et ε0 est la constante dite de permittivité diélectrique du vide,

ε0 = 8.85419 · 10−12 A · s
V ·m

On utilise aussi la constante

k =
1

4πε0

≈ 9 · 109 N ·m2

C2

Figure 7. Flux
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Ces valeurs sont valables pour des charges dans le vide. Si les charges ne sont pas dans le vide,
la constante ε0 doit être remplacée par la constante diélectrique ε du milieu qui les sépare. La
constante ε vaut, par exemple,

• dans l’eau: ε = 80ε0

• dans le verre ε = 2 à 5× ε0.

Le principe de conservation de la charge électrique s’énonce

~∇ •~j = −ρ̇

Rappelons que la force subie par une charge est donnée par (force de Lorentz)

~F = q
(
~E + ~v × ~B

)
7. Interprétation des équations de Maxwell: électrostatique

Nous allons maintenant étudier le contenu physique des équations de Maxwell, en commençant
par l’équation qui traduit le principe de conservation de la charge. Nous examinerons ensuite en
détail la première équation de Maxwell qui concerne uniquement le champ électrique.

7.1. Conservation de la charge.
Commençons par interpréter la loi de conservation de la charge. Par la formule d’Ostrogradsky,

on trouve

q̇ =

∫
V

ρ̇ dV = −
∫
V

(
~∇ •~j

)
dV = −

∫
∂V

~j • d~S

où q représente la charge enfermée dans le volume V . En d’autres termes, la variation de la
charge dans un volume est égale (au signe près) au flux du courant électrique à travers la surface
entourant ce volume: q varie seulement si des charges entrent ou quittent V . Imaginons que q soit
positive et augmente (des électrons quittent V ). Alors, le flux du courant à travers la surface est

négatif, puisque le sens ~j est, par convention, opposé au déplacement des charges négatives.

8. Equation de Maxwell M1

Avec la formule d’Ostrogradsky, la première équation de Maxwell devient

q

ε0

=

∫
Ω

ρ

ε0

dV =

∫
V

(
~∇ • ~E

)
dV =

∫
∂Ω

~E • d~S

où q est la charge totale enfermée dans le volume Ω. En mots, le flux du champ électrique
à travers une surface fermée est égal, à une constante près, à la charge enfermée à
l’intérieur de cette surface. Ce résultat est dû à Gauss (1777-1855) et est connu sous le nom
de théorème de Gauss.

Si V est une sphère de rayon r et si la densité de charge ρ est homogène, alors ~E • d~S est
constant et il vient

q

ε0

= E(~r)

∫
∂V

dS = E(~r)4πr2 ⇒ E(~r) =
1

4πε0

q

r2
⇒ ~E(~r) =

1

4πε0

q

r3
~r

C’est la loi de Coulomb pour une charge ponctuelle ou pour une charge sphérique homogène de
rayon R avec R ≤ r.

Remarque 8.1. Quelques remarques s’imposent.
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(1) Si plusieurs surfaces enferment la même quantité de charges, alors le flux total de ~E à
travers toutes ces surfaces sera le même et ceci quelle que soit la façon dont sont distribuées
les charges à l’intérieur des surfaces.

(2) Les charges situées en dehors d’une surface fermée n’ont aucune contribution au flux total

de ~E à travers elle.
(3) Si une surface n’enferme aucune charge, le flux total de ~E (créé exclusivement par des

charges extérieures à S dans ce cas) sera nul à travers cette surface.
(4) Si l’on change la distribution géométrique à l’intérieur d’une surface, on ne change par le

résultat du flux total de ~E, mais certainement la valeur locale de ~E en un point P de la
surface.

8.1. Potentiel électrique et tension électrique.

Définition 8.2. On définit le potentiel électrique dans le champ d’une charge q (ponctuelle
ou sphérique homogène de rayon R ≤ r) par

U(~r) =
1

4πε0

· q
r

unités: 1 V (Volt) = 1
J

C

et la différence de potentiel (ou tension électrique) entre deux points ~rA et ~rB par

UAB = U(~rA)− U(~rB)

Remarque 8.3. Quelques remarques s’imposent à nouveau.

(1) La force de Coulomb est conservative car

−~∇U = − q

4πε0

∂x(x2 + y2 + z2)−
1
2

∂y(x
2 + y2 + z2)−

1
2

∂z(x
2 + y2 + z2)−

1
2

 = − q

4πε0

−1
2
2x(x2 + y2 + z2)−

3
2

−1
2
2y(x2 + y2 + z2)−

3
2

−1
2
2z(x2 + y2 + z2)−

3
2

 =
1

4πε0

· q
r3
~r = ~E(~r)

Nous verrons plus loin que ceci est vrai uniquement pour un champ électrique ~E statique.
(2) Pour un chemin quelconque CA→B reliant les points ~rA à ~rB, il vient∫

CA→B

~E • d~l = −
∫
CA→B

(~∇U) • d~l = − (U(~rb)− U(~rA)) = U(~rA)− U(~rB) = UAB

(3) Le vecteur ~E donne le sens et la direction du mouvement des charges positives. De plus,
comme pour tout champ de vecteur, les équipotentielles sont en tout point perpendicu-
laires au champ ~E.

(4) En particulier, remarquons que

U(~rA) =

∫
CA→∞

~E • d~l

où ∞ désigne un point à l’infini.
(5) L’énergie potentielle d’une charge Q placée dans le champ ~E est donnée par

Epot eleQ(~rA) = Q · U(~rA)

Elle est égale au travail de la force électrique quand la charge Q va du point ~rA à l’infini.
Notons q la charge qui engendre le champ ~E. Si q et Q ont le même signe, ce travail est
positif et l’énergie potentielle de Q est positive (il faut fournir un travail pour amener Q
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de l’infini à ~rA car la force électrique est répulsive). En revanche, si q et Q sont de signes
opposés, alors l’énergie potentielle est négative (il faut fournir un travail pour amener Q
de ~rA à l’infini car la force électrique est attractive).

(6) Finalement, remarquons que

QUAB =

∫
CA→B

Q~E • d~l = − (Epot eleQB − Epot eleQA) = −∆Epot eleQ

Si Q est positive et que le déplacement se fait dans le sens du champ électrique ~E (i.e.
~E •d~l > 0), l’énergie potentielle de Q diminue (il faut fournir du travail pour amener Q de
B à A). Si Q est négative et que le déplacement se fait dans le sens du champ électrique
~E, l’énergie potentielle de Q augmente (il faut fournir du travail pour amener Q de A à
B).

8.2. Exemples.
Nous allons montrer maintenant comment la forme intégrale de la première équation de

Maxwell (le théorème de Gauss) permet de calculer le potentiel engendré par des corps chargés
de différentes formes.

Exemple 8.4. Considérons le cas de deux sphères concentriques métalliques comme sur
la figure ci-dessous.

Le champ ~E est isotrope. Imaginons une sphère intermédiaire (en
rouge sur la figure). En vertu de la première équation de Maxwell,

seule la charge positive compte pour le calcul du flux de ~E à travers
la surface rouge. Il vient

E(~r)4πr2 =
Q

ε0

⇒ ~E(~r) =
1

4πε0

Q

r3
~r

et
(Dessin: Collège de Candolle)

U+− =

∫ R1

R2

~E • d~l =

∫ R1

R2

1

4πε0

Q

r2
dr = − 1

4πε0

Q

r

∣∣∣∣R1

R2

= − Q

4πε0

(
1

R1

− 1

R2

)
Exemple 8.5. Considérons un fil droit (un cylindre) chargé infini de rayon R et de densité

linéique de charge λ = Q
l

(unités: C/m). Imaginons un cylindre dont l’axe de symétrie est
confondu avec le centre du fil (en rouge sur la figure) de rayon r et de hauteur l.
En vertu de la première équation de Maxwell, nous trouvons que

Φ = E(~rA)2πrl =
Q

ε0

⇒ ~E(~rA) =
1

2πε0

Q

l

1

rA

~rA
rA

=
1

2πε0

λ

rA

~rA
rA

où nous avons noté rA = ‖~rA‖. En effet, pour des raisons de

symétrie, la direction du champ ~E est orthogonale à l’axe du fil.
Par conséquent, le flux à travers les deux disques du cylindre est nul.
De ce qui précède, il suit que

U(~rA) = − 1

2πε0

λ ln(rA) car ~E(~rA) = −(~∇U)(~rA) (Dessin: Collège de Candolle)
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Exemple 8.6.

Considérons deux cylindres (de hauteur infinie) de rayon R1 et R2

comme sur le dessin ci-contre. Pour des raisons de symétrie, le champ
électrique est orthogonal à l’axe. En vertu de la première loi de
Maxwell, seules les charges à l’intérieur d’une surface contribuent au
flux du champ électrique à travers cette surface. Par conséquent, le
champ en ~rA est le même que pour un fil chargé infini

(Dessin: Collège de Candolle)

~E(~rA) =
1

2πε0

λ

rA

~rA
rA

où rA = ‖~rA‖. Par ailleurs, la tension électrique entre les deux cylindres est donnée par

U+− = − 1

2πε0

ln(R1)−
(
− 1

2πε0

ln(R2)

)
=

1

2πε0

ln

(
R2

R1

)

Exemple 8.7. Considérons une plaque infinie chargée de densité surfacique de charge σ = Q
S

(unités: C/m2). Pour des raisons de symétrie, le champ est perpendiculaire à la plaque. Imaginons
un cylindre dont l’axe de symétrie est perpendiculaire à la plaque (en rouge sur la figure) de hauteur
2rA et de rayon R (où rA = ‖~rA‖).
En vertu de la première équation de Maxwell, nous trou-
vons que

Φ = 2E(~rA)πR2 =
Q

ε0

⇒ ~E(~rA) =
1

ε0

Q

2πR2

~rA
rA

=
1

2ε0

σ
~rA
rA

En effet, la direction du champ ~E étant orthogonale à la
plaque, le flux à travers le bord du cylindre perpendiculaire
à la plaque est nul. De ce qui précède, il suit que

U(~rA) = − 1

2ε0

σrA
(Dessin: Collège de Candolle)

Exemple 8.8. Considérons deux plaques infinies parallèles chargées de densité surfacique de
charge σ = Q

S
(unités: C/m2).

Comme nous l’avons vu ci-dessus, le champ dû à une plaque
ne dépend pas de l’éloignement. Entre les plaques, les
champs dus aux charges positives et négatives s’ajoutent,
en dehors, ils s’annulent:

~E(~r) =
1

ε0

σ
~r

r
entre les plaques et ~E(~r) = ~0 en dehors

où r = ‖~r‖. Par conséquent,

U+− = U(0)− U(d) =
σd

ε0

et E = ‖ ~E‖ =
U+−

d
(Dessin: Collège de Candolle)

8.3. Condensateurs et capacité.
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Dans les exemples qui précèdent, on remarque que la tension U+− est proportionnelle à la
charge. On définit la capacité comme

C =
Q

|U |
≥ 0 unités:

C

V
= F (Farad)

En pratique, on utilise les unités: µF = 10−6 F, nF= 10−9 F, pF= 10−12 F, etc.
La capacité C dépend uniquement de la géométrie du corps et de sa constitution. Par exemple,

un système de deux plaques métalliques séparées par de l’air n’aura pas la même capacité que le
même système mais avec deux plaques séparées par un matériau diélectrique. Dans ce cas, dans
le calcul du champ, il faut remplacer la constante ε0, la permittivité diélectrique du vide, par

ε = εr · ε0

la permittivité diélectrique du matériau (εr est la permittivité diélectrique relative du ma-
tériau).

Exemple 8.9. Donnons quelques exemples de capacités.

(1) Capacité d’une sphère métallique de rayon R par rapport à la matière environnante
suffisamment éloignée:

C =
Q

|∆U |
=

Q
Q

4πε0R

= 4πε0R

(2) Capacité de deux sphères concentriques de charges +Q et −Q:

C =
Q

|∆U |
= 4πε0

R1R2

R2 −R1

(3) Capacité de deux cylindres concentriques de charges +Q et −Q et de longueur l:

C =
Q

|∆U |
=

2πε0l

ln
(
R2

R1

)
(4) Capacité de deux plaques parallèles de surface S de charges +Q et −Q et à distance d

l’une de l’autre:

C = ε0
S

d

On peut associer des condensateurs pour en former un nouveau. Par exemple en série (voir
figure 8, à gauche). Dans ce cas, chaque condensateur porte la même charge puisque l’armature
négative de l’un est reliée à l’armature positive du suivant. La différence totale de potentiel vaut:

Utot = U1 + U2 + · · ·+ Un =
Q

C1

+
Q

C2

+ · · ·+ Q

Cn
= Q

(
1

C1

+
1

C2

+ · · ·+ 1

Cn

)
Ainsi, des condensateurs en série sont équivalents à un condensateur de capacité Cequiv ser donnée
par

1

Cequiv ser
=

1

C1

+
1

C2

+ · · ·+ 1

Cn
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On peut aussi associer des condensateurs en parallèle (voir figure 8, à droite). Dans ce cas

Qtot = Q1 +Q2 + · · ·+Qn = C1U + C2U + · · ·+ CnU = U (C1 + C2 + · · ·+ Cn)

Ainsi, des condensateurs en parallèle sont équivalents à un condensateur de capacité Cequiv ‖ donnée
par

Cequiv ‖ = C1 + C2 + · · ·+ Cn

Remarque 8.10. Remarquons que dans chaque cas, la capacité crôıt avec la permittivité
diélectrique ε si on place un diélectrique entre les armatures métalliques.
Considérons par exemple un condensateur constitué de deux plaques par-
allèles. On peut mesurer la tension électrique avec un voltmètre (voir
figure ci-contre). On constate expérimentalement que la tension décrôıt
si la distance entre les plaques diminue. Il faut effectuer un travail pour
éloigner les plaques. Quand la distance d diminue, la capacité augmente.
Par ailleurs, si l’on introduit un diélectrique de constante ε entre les
plaques, la capacité augmente et la tension diminue. En effet, (Dessin: Collège de Candolle)

ε > ε0 ⇒ C = ε
S

d
↗ ⇒ U =

Q

C
↘

Le premier condensateur employé a été la bouteille de Leyde (ville des Pays-Bas) construit en
1745 par Ewald von Kleist. Le diélectrique est le verre d’une bouteille et les armatures sont du
papier d’étain.

Le condensateur est une pièce mâıtresse de l’électronique et sa taille a fortement diminué.
On peut fabriquer un condensateur en superposant des feuilles métalliques et des couches de
diélectrique (par exemple: papier paraffiné ou bakélisé, titanate de baryum BaTiO3, εr = ε

ε0
≈ 103)

et en branchant les feuilles en parallèle (voir figure 9).
Il existe aussi des condensateurs électrolytiques. Le diélectrique est constitué par une fine

couche d’oxyde isolant qui se forme lors de la première mise sous tension. Cela impose une
polarité fixe aux bornes du condensateur qui ne peut être inversé. La couche de diélectrique
formée étant très fine (d petit), la capacité est grande. Comme

Q = CU ,

une grande capacité permet de stoker beaucoup de charge avec un faible tension.

8.4. Energie d’un conducteur chargé et énergie du champ électrique.
Pour apporter une charge supplémentaire sur un conducteur, il faut effectuer un travail pour

vaincre la répulsion due aux charges déjà présentes. Ce travail produit une augmentation de

Figure 8. Association de condensateurs: en série (à gauche) et en parallèle (à
droite). (Dessin: Collège de Candolle.)
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Figure 9. Réalisation pratique d’un condensateur.

l’énergie du conducteur. Considérons par exemple un conducteur de capacité C (par rapport à la
matière environnante supposée suffisamment éloignée) portant une charge Q. Son potentiel vaut

U =
Q

C

Si l’on ajoute une charge infinitésimale dq au conducteur en l’amenant du lieu où U = 0, alors le
travail effectué est

dT = U dq =
q

C
dq

L’augmentation totale d’énergie du conducteur quand la charge passe de 0 à la valeur Q vaut:

Eele =

∫ Q

0

dT =

∫ Q

0

q

C
dq =

1

C

q2

2

∣∣∣∣Q
0

=
1

2C
Q2 =

1

2
CU2 ⇒ Eele =

1

2
CU2

Cette expression est valable quelle que soit la forme du conducteur chargé.
D’après ce que nous avons vu plus haut, l’énergie potentielle d’une charge q (dont la position

est notée ~r) dans le champ électrique créé par une charge qi (dont la position est notée ~ri) vaut

Epot ele = qU(~r − ~ri) =
1

4πε0

qqi
‖~r − ~ri‖

L’énergie de la charge q dans le champ créé par un ensemble de N charges qi est donnée par

Epot ele =
1

4πε0

N∑
i=1

qqi
‖~r − ~ri‖

Pour l’énergie totale du système, nous avons donc

Epot ele =
1

2

1

4πε0

∑
1≤i 6=j≤N

qqi
‖~r − ~ri‖

Dans le cas d’une densité de charge ρ dans un domaine Ω, nous trouvons

Epot ele =
1

2

1

4πε0

∫
Ω

∫
Ω

ρ(~r)ρ(~r ′)

‖~r − ~r ′‖
dV dV ′

En vertu de la première équation de Maxwell

~∇ • ~E =
ρ

ε0

~E=−~∇U⇒ ρ = ε0
~∇ •

(
−~∇U

)
De plus, rappelons que

U(~r) =
1

4πε0

∫
Ω

ρ(~r ′)dV ′

‖~r − ~r ′‖
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Par conséquent, nous trouvons que

Epot ele =
1

2

1

4πε0

∫
Ω

∫
Ω

ρ(~r)ρ(~r ′)

‖~r − ~r ′‖
dV dV ′ =

1

2

∫
Ω

ρ(~r)U(~r) dV = −ε0

2

∫
Ω

~∇ •
(
~∇U
)
U dV

Or
~∇ •

(
φ~∇φ

)
= ∂x (φ (∂xφ)) + ∂y (φ (∂yφ)) + ∂z (φ (∂zφ))

De plus,
∂x (φ (∂xφ)) = (∂xφ)2 + φ∂2

xφ

où ∂2
xφ désigne la deuxième dérivée de φ par rapport à x. Il suit que

~∇ •
(
φ~∇φ

)
= (∂xφ)2 + φ∂2

xφ+ (∂yφ)2 + φ∂2
yφ+ (∂zφ)2 + φ∂2

zφ =
(
~∇φ
)
•
(
~∇φ
)

+ ∆φ

où
∆φ =

(
∂2
x + ∂2

y + ∂2
z

)
φ = ~∇ •

(
~∇φ
)

L’opérateur ∆ = ∂2
x + ∂2

y + ∂2
z est appelé le laplacien. Par conséquent, nous trouvons que

−~∇ •
(
~∇φ
)

= −∆φ =
(
~∇φ
)
•
(
~∇φ
)
− ~∇ •

(
φ~∇φ

)
Avec ces formules, nous trouvons que

Epot ele = −ε0

2

∫
Ω

~∇ •
(
~∇U
)
U dV =

ε0

2

∫
Ω

((
~∇U
)
•
(
~∇U
)
− ~∇ •

(
U
(
~∇U
)))

dV

En vertu de la formule d’Ostrogradsky,∫
Ω

~∇ •
(
U
(
~∇U
))

dV =

∫
∂Ω

U
(
~∇U
)
• d~S = 0

En effet, supposons que toutes les charges sont contenues dans une boule B(~r0, r) de rayon r
centrée en ~r0. Alors, il suffit de considérer un domaine Ω = B(~r0, R) avec R >> r. Ainsi, sur le
bord ∂Ω de Ω, U ≈ 0. Par conséquent, nous trouvons que

Epot ele =
ε0

2

∫
Ω

(
~∇U
)
•
(
~∇U
)
dV

~E=−~∇U
=

ε0

2

∫
Ω

~E • ~E dV ⇒ Epot ele =
ε0

2

∫
Ω

‖ ~E‖2 dV

Exemple 8.11. Considérons, à titre d’exemple, un condensateur plan chargé. Entre ses
armatures qui délimitent un certain domaine Ω règne un champ électrique homogène

E =
Q

ε0S

Ce champ ne dépend pas de la distance d entre les plaques. On peut donc,
en écartant celles-ci, créer un champ dans un volume supplémentaire.
Cette création de champ nécessite un certain travail puisque les plaques
s’attirent (charges +Q et −Q). Par exemple, la plaque de droite subit une
force parce qu’elle est plongée dans le champ dû à la plaque de gauche,
qui vaut

(Dessin: Collège de Candolle)

E =
Q

2ε0S
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Chaque plaque produit la moitié du champ total. Le travail vaut donc

A = F∆x = QEgauche∆X =
1

2
EQ∆x = |∆Eele|

La variation d’énergie par unité de volume ( J
m3 ) est donnée par

dEele
dV

=
|∆Eele|

∆V
=

1
2
EQ∆x

S∆x
=

Q

2S
E =

1

2
ε0

Q

ε0S
E =

1

2
ε0E

2

Par conséquent, l’énergie électrique contenue dans le domaine Ω délimité par les plaques du con-
densateur vaut

Eele =
ε0

2

∫
Ω

dEele
dV

dV =
ε0

2

∫
Ω

E2 dV

Exemple 8.12. Calculons, à titre d’exemple, l’énergie contenue dans tout l’espace qui entoure
un conducteur sphérique de rayon R et qui porte une charge Q. Le champ électrique dépend
uniquement de r = ‖~r‖. On choisit comme élément de volume dV le volume d’une couche sphérique
de rayon r et d’épaisseur dr:

dV = 4πr2 dr

Ainsi,

Epot ele =
ε0

2

∫ ∞
R

(
1

4πε0

Q

r2

)2

4πr2 dr =
Q2

4πε0

1

2

∫ ∞
R

1

r2
dr =

Q2

4πε0

1

2R
(Dessin: Collège de

Candolle)

Rappelons que pour une boule de rayon R,

C = 4πε0R

Par conséquent,

Epot ele =
Q2

4πε0

1

2R
=

1

2
Q
Q

C
=

1

2
CU · U =

1

2
CU2

Remarque 8.13. Remarquons que si R = 0, la formule ci-dessus donne une énergie infinie
! Notre théorie de l’électricité n’est donc pas compatible avec des charges ponctuelles. Mais
existe-t-il des charges ponctuelles ? Les expériences dans les anneaux de collisions e+e− donne
relec < 10−16 cm. Par ailleurs rproton ≈ 10−13 cm. En supposant que l’électron est une sphère
conductrice, d’après la théorie de la relativité restreinte d’Einstein, nous trouvons

E =
1

2
melecc

2 ⇒ e2

4πε0

1

2relec
=

1

2
melecc

2

⇒ relectron =
e2

4πε0melecc2
≈ 9 · 109 (1.6 · 10−19)

2

9.1 · 10−31 (3 · 108)2 ≈ 2.8 · 10−15 m
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9. Interprétation des équations de Maxwell: électromagnétisme

Nous allons maintenant interpréter les trois autres équations de Maxwell. La deuxième ne
concerne que le champ magnétique. La troisième et la quatrième décrivent les relations entre
champ électrique et magnétique.

Historiquement, l’étude des champs magnétiques a été faite empiriquement; les propriétés des
aimants naturels (pierre de magnésie) ou celle des aimants artificiels (fer, acier) entrâınèrent l’étude
du champ magnétique pour lui-même, comme un phénomène indépendant. En 1820, Œrsted fit
des expériences fondamentales qui montrèrent qu’un fil parcouru par un courant produit des effets
identiques à ceux des aimants, soit sur d’autres aimants, soit sur d’autres fils parcourus par des
courants. Dès lors, les phénomènes magnétiques trouvèrent des explications et des lois purent être
exprimées (Ampère, Lorentz, Laplace, Faraday, Lenz, Maxwell).

Ce que nous appelons le champ magnétique est en fait un effet relativiste du champ électrique.
Un conducteur parcouru par un courant électrique est neutre, mais dans n’importe quel référentiel
en mouvement relativement au conducteur, celui-ci apparâıt chargé. Par conséquent, un con-
ducteur parcouru par courant exerce une force sur des charges en mouvement relativement au
conducteur: c’est la force de Lorentz

~F = q~v × ~B

10. Equation de Maxwell M2

En appliquant la formule d’Ostrogradsky à la deuxième équation de Maxwell, on déduit que le
flux du champ magnétique à travers n’importe quelle surface fermée est nul. De plus, il n’existe pas
de monopôles magnétiques ou, en d’autres termes, il n’existe pas de source du champ magnétique.

En effet, de la deuxième équation de Maxwell, il suit en vertu de la formule d’Ostrogradsky,

0 =

∫
V

~∇ • ~B dV =

∫
∂V

~B • d~S

11. Equation de Maxwell M4

Si le champ électrique est constant, la quatrième équation de Maxwell devient

c2~∇× ~B =
1

ε0

~j + ~̇E
~̇E=~0⇒ ~∇× ~B = µ0

~j où µ0 =
1

c2ε0

= 4π · 10−7 V · s
A ·m

est la constante d’induction, également appelée la constante de perméabilité magnétique du vide.
En vertu de la formule de Stockes,∫

∂S	

~B • d~l =

∫
S

(
~∇× ~B

)
• d~S = µ0

∫
S

~j • d~S = µ0(I1 − I2)

c’est-à-dire ∫
∂S	

~B • d~l =
∑

algébrique

Ij

C’est le théorème d’Ampère.
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11.1. Loi de Biot-Savart.
En vertu de la deuxième équation de Maxwell il vient

~∇ • ~B = 0 ⇒ ∃ ~A tel que ~B = ~∇× ~A

Le champ vectoriel ~A est appelé le potentiel vecteur du champ magnétique ~B. Remarquons qu’il
n’est pas unique puisque

~∇×
(
~A+ ~∇φ

)
= ~∇× ~A+ ~∇×

(
~∇φ
)

︸ ︷︷ ︸ = = ~0 ∀ φ

Par conséquent, en vertu de la quatrième équation de Maxwell, il suit si ~̇E = ~0, alors

~̇E = 0 ⇒
~j

ε0

= c2~∇× ~B = c2~∇×
(
~∇× ~A

)
= c2

(
~∇ •

(
~∇ • ~A

)
−∆ ~A

)
où

∆ = ∂2
x + ∂2

y + ∂2
z

est le Laplacien. Il est toujours possible de remplacer ~A par ~A+ ~∇φ sans changer ~B et de choisir
la fonction φ telle que

~0 = ~∇ •
(
~A+ ~∇φ

)
= ~∇ • ~A−∆φ ⇒ ∆φ = −~∇ • ~A

Par conséquent, pour trouver ~A il faut résoudre les équations suivantes

∆Ak = −µ0jk où µ0 =
1

c2ε0

= 4π · 10−7

est la constante de perméabilité magnétique du vide. La solution est donnée par

~A(~r1) =
µ0

4π

∫
V

~j(~r)

‖~r1 − ~r‖
dV

Si on a un fil avec un courant

I = ~j • d~S ⇒ ~j dV = I d~l ⇒ ~A(~r1) =
µ0I

4π

∫
fil

1

‖~r1 − ~r‖
d~l

et le champ magnétique ~B est donné par

~B =
µ0I

4π

∫
fil

d~l × (~r1 − ~r)
‖~r1 − ~r‖3

C’est la loi de Biot-Savart.
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11.2. Champ magnétique créé par un courant rectiligne infini.
Imaginons un fil rectiligne infini traversé par un courant constant et une

surface S qui est un disque de rayon r perpendiculaire au fil. En vertu de
la loi de Biot-Savart, nous savons que le champ magnétique est tangent
au cercle. De plus, en vertu du théorème d’Ampère,

B · 2πr =

∫
∂S	

~B • d~l = µ0I
(Dessin: table CRM)

c’est-à-dire

B =
µ0

2π

I

r

11.3. Champ magnétique créé par une spire unique.
En appliquant la loi de Biot-Savart, on trouve que le champ
magnétique au centre de la spire parcourue par un courant I vaut

‖ ~B‖ =
µ0I

4π

∫
	

d~l × ~r
r3

=
µ0I

4πr2
2πr = µ0

I

2r

11.4. Champ magnétique créé par une bobine longue.
On considère un solénöıde long de longueur l, c’est-à-dire un fil enroulé autour d’un cylindre

(une bobine). On trouve que∫ D

C

~B • d~l = 0

si BC est très grand. Par ailleurs, si la bobine est longue (i.e. l est
grand), alors ∫ C

B

~B • d~l = −
∫ A

D

~B • d~l
(Dessin: école de physique UNIGE)

Par conséquent, ∫
ABCD�

~B • d~l =

∫ B

A

~B • d~l = BL

et en vertu du théorème d’Ampère,

BL =

∫
ABCD�

~B • d~l = µ0

∫
SABCD

~j • d~S = µ0
n

l
LI

où n
l

est le nombre de tours par mètre. Il suit que le champ magnétique au centre de la bobine
vaut

B = µ0
nI

l

12. Force de Laplace

Si les charges en mouvement sont les électrons d’un courant dans un
fil, leur vitesse est très lente. La force de Lorentz a beau être infime
sur chaque électron, elle développe néanmoins un effet d’ensemble
très important par suite du très grand nombre d’électrons en cause. (Dessin: Collège de Candolle)
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En régime stationnaire,

I =
dQ

dt
⇒ dQ = Idt et d~F = dQ

(
~v × ~B

)
= Idt

(
~v × ~B

)
~v= d~l

dt= I
(
d~l × ~B

)
et pour un fil rectiligne de longueur l,

~F = I
(
~l × ~B

)
C’est la force de Laplace. La plupart des applications de l’électricité qui font intervenir des forces
reposent sur cette relation.

Remarque 12.1. Comme la force de Lorentz ne travaille pas, l’intensité du courant n’est pas
modifiée par le champ où se trouve le fil.

12.1. Définition de l’Ampère.
L’expérience de la balance de courant permet de définir l’Ampère à
partir des trois autres unités fondamentales, soit le m, le kg et la
s. Considérons deux fils rectilignes infinis parallèles séparés par une
distance d = 1 m. Alors (voir figure ci-contre),

F = IlB = Il
µ0I

2πd
= µ0

lI2

2πd
(Dessin: Collège de Candolle)

La définition officielle de l’Ampère est donnée par le BIPM(1):
L’ampère est l’intensité d’un courant constant qui, maintenu dans deux conducteurs parallèles,

rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de 1 mètre
l’un de l’autre dans le vide, produirait entre ces conducteurs une force égale à 2 · 10−7 newton par
mètre de longueur.

13. Equation de Maxwell M3

En appliquant la formule de Stokes à la troisième équation de Maxwell, on obtient

−Φ̇ = − d

dt

∫
S

~B • d~S = −
∫
S

~̇B • d~S =

∫
S

(
~∇× ~E

)
• d~S =

∫
∂S

~E • d~l

où Φ est le flux magnétique à travers la surface S.
Imaginons une boucle de fil sur une table reliée à un voltmètre.

Alors, la tension électrique UAB mesurée par le voltmètre est donnée
par

−Φ̇ = − d

dt

∫
S

~B • d~S =

∫
AyB

~E • d~l = Uind ⇒ Uind = −Φ̇

C’est le principe d’induction: un champ magnétique variable in-
duit une tension électrique égale, au signe près, à la variation
du flux magnétique. Le phénomène d’induction a été découvert
indépendamment par Faraday et Henry. Il est à la base de nombreux
dispositifs actuellement utilisés: générateurs électriques, transforma-
teurs, etc.

1Bureau International des Poids et Mesures, http://www.bipm.org
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Pour déterminer le sens du courant induit, il faut raisonner comme suit. Imaginons un champ
magnétique homogène vertical

~B(t) = (0, 0,−B(t)) ⇒ ~̇B(t) = (0, 0,−Ḃ(t))

et supposons que S soit le disque

S =
{

(x, y, z)
∣∣∣ z = 0 et x2 + y2 < R2

}
dont nous choisissons l’orientation: d~S = ⊗ (ainsi, ~B • d~S > 0). Alors,

−
∫
S

~̇B • d~S = −Ḃ(t)πr2 =

∫
�∂S

~E • d~l

Par conséquent, si B augmente (i.e. Ḃ > 0), le champ ~E le
long du fil tourne dans le sens trigonométrique 	 et le courant,
qui indique le débit des charges positives, tourne également
dans le sens trigonométrique 	 (2). Par conséquent, le champ
magnétique créé par le courant induit rentre dans le plan
~Bind = � et s’oppose à la variation de flux magnétique.
Toutes les situations sont résumées dans le tableau ci-contre (en

haut pour le choix d~S = ⊗ et en bas pour le choix d~S = �).
Nous constatons que le champ magnétique crée par le courant
induit s’oppose à la variation du flux inducteur. Cela revient à
dire que tout phénomène d’induction s’oppose à sa cause.
C’est la loi de Lenz. Remarquons que le contraire serait absurde,
car une petite variation de flux impliquerait la création d’un flux
infini !

d~S = ⊗ ⇒
∫
�

~B d~S ‖ ~B‖ −Φ̇ ~I ~Bind

⊗ ⊗ ↗ − 	 �
⊗ ⊗ ↘ + � ⊗
� ⊗ ↗ + � ⊗
� ⊗ ↘ − 	 �

d~S = � ⇒
∫
	

~B d~S ‖ ~B‖ −Φ̇ ~I ~Bind

⊗ � ↗ + 	 �
⊗ � ↘ − � ⊗
� � ↗ − � ⊗
� � ↘ + 	 �

Remarque 13.1. Le fait que ∫
	

~E • d~l 6= 0

quand le flux magnétique n’est pas constant, montre que ~E n’est pas conservatif, c’est-à-dire qu’il
n’est pas le gradient d’un potentiel. Par conséquent, la tension induite n’est pas une différence
de potentiel. Au lieu de tension induite, on utilise parfois la terminologie “force électro-motrice”.
La boucle représentée plus haut agit comme un générateur. Par conséquent, la tension UAB est
positive quand le courant induit tourne dans le sens trigonométrique 	 et négative quand le
courant induit tourne dans le sens horaire �. Il suit que{

UAB = Φ̇ si d~S = ⊗

UAB = −Φ̇ si d~S = �

13.1. Les courants de Foucault.
Tout corps conducteur (métal) soumis à un flux magnétique variable est le siège de courants

induits. La conduction n’étant pas parfaite (sauf dans les supraconducteurs), les courants créent
une agitation thermique des atomes du conducteur (effet Joule). De l’énergie électrique est trans-
formée en énergie thermique. C’est en général, dans un appareil à induction, une cause de perte

2les électrons, qui ont une charge négative, tournent dans le sens horaire �
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d’énergie (par exemple, échauffement des transformateurs). Pour diminuer les courants induits
dans les noyaux de fer des enroulements, on découpe le métal en fines lamelles couvertes d’isolants.
Application: freinage par courants de Foucault.

13.2. Auto-induction.

Reprenons l’exemple d’une boucle de fil. Supposons qu’elle soit par-
courue par un courant I tournant dans le sens horaire � et adoptons
la convention {

I > 0 si I �

I < 0 si I 	

Le courant crée un champ magnétique perpendiculaire au plan de la boucle dont le sens est donné
par {

I � ⇒ ~B = ⊗

I 	 ⇒ ~B = �

et ce champ magnétique est proportionnel à I. De plus, le flux magnétique est proportionnel au
champ magnétique et donc également au courant. Le facteur de proportionnalité est appelé le
coefficient d’auto-induction et se note L:

Φ = LI avec d~S = ⊗ Unités:

[
V · s
A

]
= [H] (Henry)

Il dépend seulement de la forme géométrique du conducteur. En vertu de la loi de Faraday,

Uind = −Φ̇ = −Lİ ⇒ UAB = Lİ

Exemple 13.2. On considère à nouveau un solénöıde long, c’est-à-dire un fil enroulé autour
d’un cylindre (une bobine). On trouve que le flux magnétique à travers la bobine vaut

Φ = πr2µ0
nI

l

où r est le rayon de la bobine et l sa longueur. Par conséquent, la
tension induite par une variation du courant, vaut

Uind = −nΦ̇ = −µ0
n2S

l
İ = −Lİ ⇒ L = µ0n

2S

l

où S est la surface de la section de la bobine et n le nombre de
spires.

(Dessin: écolde de physique UNIGE)

Remarque 13.3. Comme nous l’avons déjà mentionné, en raison du signe − dans le loi
de Faraday, la tension induite s’oppose aux variations de courant. Une bobine dans un circuit
électrique joue donc le même rôle que la masse inertielle en dynamique. La masse s’oppose aux
variations de vitesse puisque en vertu de la deuxième loi de Newton

v̇ = a =
Fres
m

De façon similaire, une bobine s’oppose aux variations de courant.
Remarquons que l’équation pour le courant dans un circuit RLC série est donnée par
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LÏ +Rİ +
I

C
= U̇generateur

où L est le coefficient d’auto-induction de la bobine, R la valeur
de la résistance, C la capacité du condensateur et Ugenerateur la
tension du générateur. Par ailleurs, l’équation du mouvement d’un
oscillateur harmonique forcé est donnée par

mẍ+ ηẋ+ 2kx = ky(t)

où m est la masse, eta est le coefficient de frottement et 2k la con-
stante du système des deux ressorts. On remarque que ces équations
sont similaires et que L joue le rôle de m.

m

0 L−L

14. Applications de l’induction

14.1. Les transformateurs.

Un transformateur se compose de deux enroulements, le primaire
et le secondaire, bobinés sur une carcasse métallique (fer doux) qui
réalise entre eux un couplage inductif. En appliquant une tension
alternative (U1) au primaire, on y fait circuler un courant alternatif
(I1) qui provoque sans le fer un champ magnétique B (donc un flux
magnétique) alternatif. Ce dernier crée la tension U2 dans le sec-
ondaire par induction.

(Dessin: Collège de Candolle)

Remarque 14.1. Nous supposons que nous avons des transformateurs idéaux, c’est-à-dire
que nous admettons que la résistance ohmique des cicuits est négligeable et que les pertes de flux
sont aussi négligeables.

Le flux d’induction Φ à travers toute section du circuit magnétique est le même à chaque
instant. Ainsi {

Φ1 à travers la bobine 1 = N1Φ ⇒ Φ̇1 = N1Φ̇

Φ2 à travers la bobine 2 = N2Φ ⇒ Φ̇2 = N2Φ̇

En considérant la transformation dans le sens 1→ 2, on trouve

U2 = Uind 2 = −Φ̇2 = −N2Φ̇

et en considérant la transformation dans le sens 2→ 1, on trouve

U1 = Uind 1 = −Φ̇1 = −N1Φ̇

Le transformateur fonctionnant dans les deux sens pour un même Φ, il suit que

Φ̇ = −U2

N2

= −U1

N1

⇒ U2

U1

=
N2

N1

Les transformateurs sont d’un usage extrêmement courant, dans toutes les gammes de puis-
sance: radio, T.V., allumage de voiture, industrie, centrales et réseaux électriques, four à induction,
etc.
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15. Equations d’onde

Dans le vide (ρ = 0 et ~j = ~o), les équation de Maxwell deviennent,

~∇ • ~E = 0 (M1)

~∇ • ~B = 0 (M2)

~∇× ~E = − ~̇B (M3)

c2~∇× ~B = ~̇E (M4)

En dérivant la troisième équation par rapport à t, on obtient

− ~̈B = ∂t

(
~∇× ~E

)
= ~∇× ~̇E

CM4
= ~∇×

(
c2~∇× ~B

)
= c2

~∇ (~∇ • ~B)︸ ︷︷ ︸
CM2

= 0

−(~∇ • ~∇) ~B


c’est-à-dire

1

c2
~̈B = ∆ ~B

où

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

est le Laplacien.
En dérivant la quatrième équation par rapport à t, on obtient

− ~̈E = ∂t

(
c2~∇× ~B

)
= c2~∇× ~̇B

CM3
= ~∇×

(
~∇× ~E

)
= c2

~∇ (~∇ • ~E)︸ ︷︷ ︸
CM1

= 0

−(~∇ • ~∇) ~E


c’est-à-dire

1

c2
~̈E = ∆ ~E

Remarque 15.1. Les équations pour ~E et ~B sont des équations d’onde comme nous allons
le voir. En introduisant le d’Alembertien

2 =
∂2

∂t2
− c2∆

Les équations pour ~E et ~B deviennent

2 ~E = 0 et 2 ~B = 0

Cherchons pour ~E une solution de la forme

~E(~x, t) = ~E0(~k)ei(~k•~x+ωt) = ~E0(~k)
(

cos(~k • ~x+ ωt) + i sin(~k • ~x+ ωt)
)
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Alors
2 ~E = −

(
ω2 − c2‖~k‖2

)
~E = 0 ⇒ ω = ±c‖~k‖

C’est une onde. Calculons sa vitesse: sa longueur d’onde est donnée par

λ =
2π

‖~k‖

et sa période par

T =
2π

ω

Ainsi, sa vitesse vaut

v =
λ

T
=

2π

‖~k‖
2π
ω

=
ω

‖~k‖
= ±c

Pour une condition initiale donnée ~E(~x, 0) pour laquelle la transformée de Fourrier existe

~E(~x, 0) =
1

(2π)
3
2

∫
~E0(~k)ei~k•~xd3k

la solution est donnée par

~E(~x, t) =
1

(2π)
3
2

∫
~E0(~k)ei(~k•~x+c‖~k‖t)d3k



CHAPITRE 5

Circuits électriques

Dans ce chapitre, nous allons étudier plusieurs circuits électriques composés d’un générateur,
de résistances, de condensateurs et de bobines. Les éléments sont reliés par des fils dont la
résistance est supposée nulle. Les tensions aux bornes des différents éléments sont mesurées avec
un voltmètre et les courants avec un ampèremètre.

1. Symboles

Les symboles utilisés pour représenter les différents éléments d’un circuit se trouvent sur dans
le tableau 1.

Fil Résistance

Ampèremètre
A

Voltmètre
V

Condensateur Bobine

Source de tension continue Source de tension alternative

Interrupteur Résistance variable

Tableau 1. Symboles utilisés pour représenter les différents éléments d’un circuit électrique.

2. Lois de Kirchhoff

2.1. Première loi de Kirchhoff: Loi des nœuds.
Un nœud est un point dont partent plusieurs fils. En

vertu du principe de conservation de la charge, la somme
algébrique des courants entrants et sortants est nulle:

n∑
k=1

Ik = 0

On peut, par exemple, adopter la convention de compter
positivement les courants qui entrent et de compter
négativement les courants qui sortent.

I1 < 0

I2 > 0

I3 < 0I4 > 0

2.2. Deuxième loi de Kirchhoff: Loi des mailles.

65
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Si le flux du champ magnétique à travers un circuit électrique est nul, alors, en vertu de la
troisième équation de Maxwell, pour tout chemin fermé (le bord ∂S d’une surface S),

~∇× ~E = − ~̇B ⇒
∫
	∂S

~E • d~l =

∫
S

(
~∇× ~E

)
d~S = −

∫
S

~̇B d~S = 0

Considérons par exemple le chemin

A→ B → C → D → A

sur le circuit présenté ci-contre. Il y a un générateur et trois
éléments quelconques. Alors,∫

A→B→C→D→A

~E • d~l = 0 ⇒ UAB + UBC + UCD + UDA = 0

A B

CD

Cette loi est valable dans le cas de courants continus. Elle reste valable en bonne approximation
avec des courants alternatifs à “basses fréquences”. Pour de l’électronique hautes fréquences,
l’auto-induction dans le circuit n’est plus négligeable.

3. Les Résistances

Pour une résistance,
UAB = R · I

où I est le courant traversant la résistance, c’est-à-dire le débit de charge (unités:
C
s

= A=ampère) compté positivement dans le sens de la flèche. La constante R est

appelée la résistance (unités: V
A

= Ω=Ohm). Par exemple, pour un fil de section S
et de longueur l,

R = ρ
l

S
A

B
I

où ρ est la résistivité du matériau utilisé. Par exemple,

ρcuivre = 1.68 · 10−8 Ω ·m

ρverre = 1017 Ω ·m

La puissance dissipée par une résistance est donnée par (effet Joule)

P = U · I = RI2 =
U2

R

En effet, une charge q passant à travers la résistance perd une énergie égale à

q · U

Cette énergie est transformée en chaleur. La quantité d’énergie dissipée par unité de temps est
donnée par

P =
q · U
t

= U
q

t
= U · I
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3.1. Résistances en séries.
Des résistances montées en série comme sur la fig-

ure ci-contre sont équivalentes à une résistance de
résistance Requiv. Le courant traversant toutes les
résistances est le même. Par conséquent

A

R1

B

R2

C

R3

D

UAD = UAB + UBC + UCD = R1I +R2I +R3I = RequivI ⇒ Requiv = R1 +R2 +R3

3.2. Résistances en parallèle.
Des résistances montées en parallèle comme sur la figure ci-

contre sont équivalentes à une résistance de résistance Requiv. La
différence de potentiel aux bornes de toutes les résistances est la
même. Par conséquent

UAB = R1I1 = R2I2 = R3I3 = RequivI et I = I1 + I2 + I3

⇒ 1

Requiv

=
I

UAB
=
I1 + I2 + I3

UAB
=

1

R1

+
1

R2

+
1

R3

A

R2

B

R1

R3

⇒ 1

Requiv

=
1

R1

+
1

R2

+
1

R3

4. Les condensateurs

Comme nous l’avons vu, la tension (ou différence de potentiel) aux bornes d’un condensateur
est donnée par

U =
Q

C

Par conséquent, en dérivant par rapport au temps, on trouve

U̇ =
I

C

où I est le courant traversant le condensateur.
Soyons plus précis concernant le signe du courant:

UAB =
Q

C
⇒ U̇AB =

I

C

où le courant I > 0 dans le sens de la flèche et I < 0 dans le
sens contraire. Rappelons que par convention, le courant indique
le mouvement des charges positives.

A

C

B

I

En effet, imaginons par exemple que la plaque de gauche du condensateur soit positive (et
donc celle de droite est négative). Alors UAB > 0. Si le courant est dans le sens de la flèche, cela
signifie que la plaque de droite se charge négativement et donc U̇AB > 0. De façon similaire, si
c’est la plaque de droite du condensateur qui est positive, alors UAB < 0. Si le courant est dans
le sens de la flèche, alors la charge de la plaque de droite diminue et U̇AB > 0.
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4.1. Décharge et décharge d’un condensateur à travers une résistance.
On charge un condensateur puis on ferme le commutateur du

circuit représenté sur la figure ci-contre. En vertu des lois de
Kirchhoff, il vient

UAB + UCD = 0 ⇒ Q

C
+RI = 0

d
dt⇒ Q̇

C
+Rİ = 0 ⇒ I

C
+Rİ = 0

Rİ = − I
C
⇒ I(t) = I0e−t/(RC)

A

C

B C

R

D

où I représente la valeur absolue du courant. Le sens du courant est déterminé par la charge
initiale du condensateur. Par exemple, si initialement, la plaque supérieur du condensateur est
positive, alors le courant tournera dans le sens horaire �. Par ailleurs,

RI0 =
|Q0|
C
⇒ I0 =

|Q0|
RC

Conclusion: le courant décrôıt de manière exponentielle.
On considère le circuit représenté sur la figure 1. On charge le condensateur en mettant le

commutateur en position 1 et on le décharge en mettant le commutateur en position 2. Lorsque
le commutateur est en position 1, en vertu des lois de Kirchhoff, il vient (U0 > 0)

UBA + UAD + UDB = 0 ⇒ −U0 +
Q

C
+RI = 0

d
dt⇒ 0 +

I

C
+Rİ = 0 ⇒ I(t) = I0e−t/(RC) avec U0 = RI0

Par ailleurs, la charge du condensateur est donnée par,

|Q(t)| =
∫ t

0

I(τ) dτ = −I0RCe−t/(RC) + I0RC = I0RC
(
1− e−t/(RC)

)
= U0C

(
1− e−t/(RC)

)
Par ailleurs, en vertu de la Loi de Kirchhoff,

UAD = −UBA − UDB = U0 −RI = U0 −RI0e−t/(RC) = U0

(
1− e−t/(RC)

)
4.2. Tube à décharges.
En disposant aux bornes d’une capacité un tube à décharges (voir figure 2) qui la court-circuite

lorsque la tension atteint une valeur Ua (tension d’allumage) et qui la branche pour une tension
Ue (tension d’extinction), on obtient une répétition du phénomène sous forme d’oscillations de
relaxation. Si la résistance interne du tube est beaucoup plus petite que la résistance R, la
décharge est quasi-instantanée. La période T est donnée par Ua = U0

(
1− e−t1/(RC)

)
⇒ t1 = −RC ln(1− Ua/U0)

Ue = U0

(
1− e−t0/(RC)

)
⇒ t0 = −RC ln(1− Ue/U0)

⇒ T = t1 − t0 = −RC ln

(
U0 − Ua
U0 − Ue

)
= RC ln

(
U0 − Ue
U0 − Ua

)
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4.3. Impédance d’un circuit RC série.
Un circuit RC série est soumis à une tension alternative

UBA = U0 sin(ωt)

où U0 > 0. Alors, en vertu de la Loi de Kirchhoff,

UBA = RI +
Q

C

d
dt⇒ U̇BA = Rİ +

I

C

c’est-à-dire
I

C
+Rİ = U0ω cos(ωt)

A

C

R

B

La solution générale de l’équation homogène est donnée par

I(t) = I0e−t/(RC)

Pour trouver une solution particulière de l’équation complète, il faut poser

I(t) = a cos(ωt) + b sin(ωt)

Figure 1. Charge d’un condensateur.

Figure 2. Tube à décharges.
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En substituant dans l’équation différentielle, on obtient

a

C
cos(ωt) +

b

C
sin(ωt)−Raω sin(ωt) +Rbω cos(ωt) = U0ω cos(ωt) ∀ t

c’est-à-dire {
a
C

+Rbω = U0ω

b
C
−Raω = 0

⇒ a =
ωCU0

1 +R2ω2C2
et b =

Rω2C2U0

1 +R2ω2C2

Rappelons la formule trigonométrique:

a cos(ωt) + b sin(ωt) = A sin(ωt+ δ)

En posant t = 0 on obtient
a = A sin(δ)

et en posant t = π
2
, il vient

b = A sin
(π

2
+ δ
)

= A cos(δ)

Par conséquent,
a2 + b2 = A2 ⇒ A =

√
a2 + b2

et
tan(δ) =

a

b
et sign(δ) = sign(a)

Avec cette formule, il suit que

I(t) = Imax sin(ωt+ δ)

où

Imax =

√
ω2C2U2

0 +R2U2
0ω

4C4

1 +R2ω2C2
=

U0ωC√
1 +R2ω2C2

et

tan(δ) =
1

RωC

On définit l’impédance du circuit comme

Z =
Umax
Imax

C’est l’équivalent de

R =
U

I

pour du courant alternatif. Dans notre cas, il vient

Z =
U0

Imax
=

√
1

ω2C2
+R2

Remarquons que pour R = 0, il vient

Z =
1

ωC
et δ =

π

2



Les condensateurs (page 71/69)


	Chapitre 1. Electrostatique
	1. Charge & corps chargés
	2. La loi de de Coulomb
	3. La notion de champ électrique
	4. Tension et potentiel électrique

	Chapitre 2. Fonctions à plusieurs variables
	1. Dérivées partielles
	2. Gradient
	3. Intégrale curviligne
	4. Généralisations du théorème fondamental du calcul différentiel

	Chapitre 3. Forces conservatives
	1. Définition
	2. Travail
	3. Exemples et contre-exemples
	4. Energie mécanique

	Chapitre 4. Equations de Maxwell
	1. Champs électrique et magnétique
	2. Champ électrique
	3. Effet du champ électrique sur la matière
	4. Champ magnétique
	5. Densités de charge et de courant
	6. Equations de Maxwell
	7. Interprétation des équations de Maxwell: électrostatique
	8. Equation de Maxwell M1
	9. Interprétation des équations de Maxwell: électromagnétisme
	10. Equation de Maxwell M2
	11. Equation de Maxwell M4
	12. Force de Laplace
	13. Equation de Maxwell M3
	14. Applications de l'induction
	15. Equations d'onde

	Chapitre 5. Circuits électriques
	1. Symboles
	2. Lois de Kirchhoff
	3. Les Résistances
	4. Les condensateurs


