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CHAPITRE 1

Electrostatique

1. Charge & corps chargés

1. Définition.

La charge est une propriété fondamentale de la matiere, se manifestant par l'interaction entre
deux corps chargés. De nombreuses expériences révélerent 1'existence de deux types de charges
nommeées positives et négatives pour des raisons historiques.

Deux corps portant des charges de méme nature (positives ou négatives) subiront une force
répulsive, alors que deux corps portant des charges de signe opposé subiront une force attractive.

Des expériences menées au 20°¢ siecle démontrerent que la charge d'un corps est toujours un
multiple entier de la charge élémentaire e ~ 1.6107*° Coulomb, il s’agit donc d'une grandeur
quantifiée. La charge élémentaire correspond a la charge d'un électron (négative) ou d’un proton
(positive) et cette grandeur est conservée dans un systeme isolé, il est donc impossible de détruire
ou de créer de la charge.

L’unité de la charge est le Coulomb [C] d’apres Charles-Augustin de Coulomb (v. plus loin).
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2. Electrisation par frottement/contact.

La charge globale de la majorité de la matiere est neutre, puisqu’un atome contient autant de
charges négatives (électrons) que de charges positives (protons dans le noyau), s’il n’est pas ionisé.

Il est cependant possible de modifier la charge globale d'un corps en le frottant, comme nous
I'avons tous constaté (& nos dépens) en recevant un léger choc électrique en présence d'un corps
métallique apres nous étre chargés par frottement sur un sofa ou une moquette.

On peut par exemple frotter un baton en plastique (neutre) avec de la fourrure (neutre) pour
obtenir un baton portant une charge globale non-nulle.

FIGURE 1. Transfert de charges par frottement

Comme on peut voir sur le croquis ci-dessus, le baton arrache des électrons a la fourrure
et porte finalement un exces d’électrons, alors que la fourrure accuse un manque d’électrons. La
fourrure est chargée positivement et le baton négativement. On peut aussi frotter une tige en verre
avec un morceau de soie, dans ce cas la tige se chargera positivement et la soie négativement.

N.B. dans tous les cas, le transfert de charge est un transfert d’électrons, donc de charges
négatives. Un corps se chargeant positivement a donc perdu des électrons et non acquis des
charges positives. Ceci est di au fait qu’il est pratiquement impossible d’arracher les protons
situés dans le noyau, alors qu’il est relativement aisé d’arracher les électrons dans les couches
extérieures d’'un atome, ou ils sont faiblement liés.

Les charges présentes en exces sur le baton peuvent maintenant étre en partie transférées par
contact & un autre corps (p.ex. un électroscope) et le charger a son tour. Dans le cas d'un
électroscope, 'appareil indique la présence de charges et son intensité par la répulsion entre le
cadre de I'électroscope et 1'aiguille pivotante.

De maniere générale il faut donc un contact entre deux corps pour que la charge de I'un puisse
étre en partie transmise a 'autre.
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FIGURE 2. Electrisation par contact d’un corps (électroscope)

N.B. C’est l'effet d’attraction exercé par de telles matieres chargées par frottement sur d’autres
petits corps légers qui fut constaté par certains savants grecs présocratiques : 1'une des matieres
exhibant cet effet est 'ambre, en grec elektra (HAekTpn) et c’est ce terme repris par p.ex. William
Gilbert (1544-1603) dans son ouvrage De Magnete qui a donné le nom d’électricité.
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3. Conducteurs & isolants.

Certaines substances laissent facilement traverser les charges, comme p.ex. les métaux ou les
solutions liquides contenant des ions, il s’agit de conducteurs électriques.

D’autres substances laissent difficilement traverser les charges, on parle alors d’isolants. Le
plastique, le bois, lair (froid et sec) ou I'eau distillée sont p.ex. des isolants et c¢’est la raison pour
laquelle la charge reste présente assez longtemps sur un baton frotté, puisqu’elle ne peut pas se
répartir dans le plastique ou se décharger dans l’air. Un électroscope en métal par contre peut
facilement accueillir des charges présentes sur ce baton, puisqu’il s’agit d’un conducteur. On peut
aussi constater qu’il est facile de décharger 1’électroscope a ’aide d’un doigt, le corps humain étant
un assez bon conducteur.

Métal Bois
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FIGURE 3. Conducteurs & isolants

Les tableaux suivants contiennent certaines valeurs de la conductivité (en Siemens S par metre
m) pour des substances isolantes ou conductrices.

| Conducteurs | Conductivité S - m™" |

Cuivre (Cu) 5.96 - 107
Or (Au) 4.1-107
Eau salée 4.8
| Isolants | Conductivité¢ S-m™ |
Eau distillée 5.5-107°
Air ~ 3—-8-1071

Ebonite ~ 10721
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4. Influence.

Dans le cas de I’électroscope p.ex., on peut constater que I'aiguille commence a pivoter lorsqu’on
en approche la charge avant le contact et donc avant le transfert de charges, mais que cet effet
disparait si on s’éloigne a nouveau de 1’électroscope sans ’avoir touché.

Il n’y a donc pas eu de transfert de charges d’un corps a l'autre mais le corps chargé au
préalable a exercé une influence sur l'autre corps grace au champ électrique (v. plus loin) qui
I’entoure. Cette influence se manifeste par une force s’exercant sur les charges présentes dans le
corps et par une nouvelle répartition de celles-ci dans le corps, on parle alors de polarisation.

5. Corps neutre.

Si le corps est globalement neutre, les charges identiques a celles présentes sur le corps chargé
qu’on en approche vont s’éloigner (elles sont repoussées), alors que les charges de signe opposé
vont s’approcher (elles sont attirées). On est donc en présence d'un corps ou les charges ne sont
plus réparties de maniere homogene, en d’autres termes un corps polarisé.

N.B. Nous verrons plus tard que la force est inversément proportionnelle au carré de la distance
(F 7_%), ce qui signifie dans le cas d’un corps neutre que l'attraction I’emportera toujours sur la
répulsion et s’il est suffisamment léger, qu’il sera assez attiré pour se déplacer vers le corps chargé.

Dans l'exemple suivant, on aproche un baton chargé positivement d’un électroscope (neutre)
contenant deux feuillets conducteurs. On peut voir que les feuillets auront tendance a s’écarter a
cause de la répulsion augmentant avec les charges tentant de s’éloigner le plus possible du baton
qui finissent dans les feuillets.

On peut constater que cette expérience nous montre que de la charge est présente sur le baton,
en revanche elle ne nous permet pas de déterminer la nature de cette charge, 'effet étant identique
si le baton est chargé négativement.

Isolant

\ \/ Métal

conducteurs

Feuillets / - 4
4 E R

F1GURE 4. Electroscope a feuillets et influence sur un corps neutre
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6. Corps chargé.
Un corps chargé au préalable ressentira aussi I'influence d’un autre corps chargé, on peut

exploiter cet effet pour déterminer le signe des charges.
Dans I’exemple suivant, 1’électroscope a été chargé (négativement) par contact : en I’approchant

avec une charge négative, les feuillets s’écartent, alors que si I’on approche un corps chargé posi-

tivement, les feuillets se rapprochent.

FIGURE 5. Influence

7. Polarisation par influence.
On peut exploiter l'effet de la polarisation pour faire apparaitre des charges sur p.ex. un

conducteur. Deux conducteurs en contact sont approchés d’'une grosse charge les influencant : les
charges peuvent se répartir a travers les deux corps puisqu’il s’agit de conducteurs. Si I'on sépare
maintenant les deux charges toujours en présence de la grosse charge positive, on obtient deux

corps portant désormais un excédent net de charges.

0 700

N.B. La charge totale étant conservée on verra apparaitre autant de charges négatives sur un

corps que de charges positives sur 'autre.
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8. Répartition des charges dans un conducteur & cage de Faraday.

Les charges ajoutées a un conducteur pouvant se déplacer pratiquement librement, elles es-
saieront donc de s’éloigner le plus possible les unes des autres. Ceci implique entre autres qu’elles
se répartiront toujours sur ’extérieur de la surface du conducteur. Si celui-ci est p.ex. sphérique,
elles se répartiront de maniere réguliere sur 'extérieur de la sphere.

s
+
+ +
-+ + +
+ )
+ P s

F1GURE 6. Charges réparties sur l'extérieur d’une sphere conductrice

Si le corps possede des endroits ol le rayon de courbure est petit comparé au reste de celui-ci (en
d’autres termes des pointes), les charges s’accumuleront dans ces pointes et le champ électrique
engendré par ces charges sera plus important a cet endroit, le corps aura donc tendance a se
décharger par ces pointes.

FiGURE 7. Répartition des charges dans un corps de courbure non uniforme.



Charge & corps chargés (page 12/69)

9. Cage de Faraday.
On peut montrer que les charges réparties sur l'extérieur d'un conducteur de surface fermée se
répartiront toujours de maniere a neutraliser le champ électrique a l'intérieur du conducteur (que
celui-ci soit creux ou plein). Ceci s’applique aussi dans le cas d'une surface délimitée par un treillis
métallique (conducteur).

Cet effet fut découvert par Michael Faraday (v. plus loin) et on appelle donc un tel corps une
cage de Faraday.

Un avion, un ascenseur, une voiture sont des cages de Faraday protégeant les utilisateurs de
I'effet de la foudre par exemple.

FIGURE 8. Personne protégée par une cage de Faraday
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10. Benjamin Franklin 1706-1790.

Benjamin Franklin est I'un des pionniers de ['histoire américaine, a la fois scientifique de
rénommeée internationale, en méme temps politicien et diplomate habile, contribuant a la décla-
ration d’indépendance puis a la constitution de la nouvelle république des états unis d’Amérique.

Parmi ses contributions au monde scientifique, on doit a Franklin les noms de charge positive
et négative pour décrire les deux différents types d’électricité susceptibles d’étre engendrés par
frottement. Avant cela, on utilisait souvent les termes d’électricité vitreuse (apparaissant sur une
tige en verre) ou d’électricité résineuse pour décrire les charges provoquées par frottement sur
chaque type de corps respectivement.

F1GURE 9. Benjamin Franklin et ’expérience du cerf-volant de Franklin

L’une des expériences les plus connues de Franklin fut de faire voler un cerf-volant par temps
orageux et d’extraire une étincelle & un objet métallique relié a celui-ci (la ficelle mouillée du
cerf-volant s’avérant un relativement bon conducteur). Cette expérience a permis de confirmer la
nature électrique de la foudre.

Franklin développa par la suite le para-tonnerre (ou para-foudre) qui fut p.ex. installé par le
roi Georges III sur les poudrieres du royaume britannique.

2. La loi de de Coulomb

1. Définition.

Les recherches menées par Charles Augustin de Coulomb (en 1784) permirent de déterminer la
force agissant entre deux corps chargés et révelerent que celle-ci était inversément proportionnelle
au carré de la distance et directement proportionnelle au produit des charges.

La force de Coulomb ou force électrostatique décrit donc l'interaction entre deux charges
ponctuelles en fonction du produit des charges et du carré de la distance r entre ces deux charges.
41" 42 q1 - 42 f

ou Fe=k-
72 72 r

Fo=k-
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q; 92
€
qu/q1 Fm/qz '
r
q; a,
P
m < C =
F’I2/Q1 Fql/qz

Comme on peut voir, la force ressentie par chaque charge est identique Fy, /g, = Fi,/q,
La constante k est donnée par la relation suivante

k=

~9.10° N
471'80 c*

Ou la constante g9 ~ 8.85- 10712 A - s- V=1 . m™! est la permittivité électrique du vide (et
environ celle de 'air).

e La force de Coulomb entre deux charges est répulsive pour deux charges de méme signe
e La force de Coulomb entre deux charges est attractive pour deux charges de signe opposé

La force de Coulomb totale ressentie par une charge ¢; est le résultat de la somme vectorielle
de toutes les forces exercées par les charges ¢2, q3 ... qn

Fo=Fy+Fy+--+F,
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2. Charles-Augustin de Coulomb 1736-1806.

Charles-Augustin de Coulomb était un scientifique frangais qui est probablement le plus connu
pour son expérience déterminant que la force s’exercant entre deux charges est inversement pro-
portionnelle au carré de la distance : la force électrostatique ou force de Coulomb.

Il publia ses résultats en 1785 dans Premier Mémoire sur UElectricité et le Magnétisme. 1l
résulte donc de ces trois essais, que 'action répulsive que les deux balles électrifiées de la méme
nature d’électricité exercent 1'une sur I'autre, suit la raison inverse du carré des distances.

Coulomb développa pour les besoins de son expérience une balance a torsion tres précise, lui
permettant de quantifier 'effet des charges entre elles. C’est aussi en se servant d’une balance
a torsion de type similaire que Henry Cavendish (1731-1810) parvint & déterminer une dizaine
d’années plus tard la valeur de la constante de gravitation universelle G' ~ 6.67-10~ N-m?-kg—2

Nom - de L1t R, dee Jidm. 5 Pay. 5360 1Y, .
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F1GURE 10. Charles-Augustin de Coulomb et sa balance a torsion

En son honneur, 'unité de la charge porte le nom de Coulomb (C).

3. La notion de champ électrique

1. Définition.

La notion de champ, qui représenta une révolution fondamentale dans la maniere de modéliser les
corps physiques et leurs interactions fut développée par Michael Faraday (1791-1867) et codifiée
mathématiquement par (entre autres ) James Clerk Maxwell (1831-1879).

En schématisant : la présence d’une charge () a un effet sur I’espace environnant, la charge est
entourée par un champ dont I'effet peut se manifester en présence d’une autre charge (ges). En
effet, si on introduit une charge test, (on veut dire par la que l'effet de cette charge sur le champ
peut étre considéré comme négligeable) dans le champ, celle-ci ressent une force F de la part de
Q.

On peut donc associer a chaque point de I’espace autour de () un vecteur, qui multiplié par la
valeur de la charge test représente la force que celle-ci ressent, indiquant l'intensité et la direction
de celle-ci. Il s’agit donc d’un champ vectoriel, le champ électrique
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La notion de champ électrique

Py E oo BT

On peut représenter le champ par des vecteurs ou par des lignes de champ. Dans ce cas, la
densité des lignes de champ indique l'intensité du champ et les lignes de champ sont en tout point

tangentes a la force ressentie

~ Ny /o \
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FIGURE 11. Champ vectoriel et lignes de champ pour une charge ponctuelle et
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entre deux plaques chargées
Le champ électrique total exercé par les charges ¢1, ¢2 ... ¢, en un point est
E=E +FE,+---+E,

}, on utilise aussi souvent I'unité équivalente [%]

N

L’unité du champ est le [c
N.B. Par convention la charge test est toujours considérée comme étant positive.

2. Exemples de champs particuliers.
2.1. Champ d’une charge ponctuelle. Pour une charge ponctuelle p.ex., on peut voir que le

champ est donné par
:>E:k:-% Bk 2.
r

=<3y

Ou o —_—
r2

F1GURE 12. champ d’une charge ponctuelle positive et négative

On parle aussi dans ce cas du champ d’un monopole, puisqu’il ne s’agit que d’une charge.
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2.2. Champ entre deux plaques paralléles. Comme on peut voir sur ce graphique, le champ
entre deux plaques est uniforme, la valeur du champ est la méme partout entre les deux plaques
(ceci n’est une bonne approximation qu’au centre entre les deux plaques)

1 Q

=— .= champ entre deux plaques paralleles de charge @) et de surface S

E()S

f'{/ q

FiGURE 13. Champ entre deux plaques paralleles

2.3. Champ d’un dipole. Deux charges de méme signe ou opposées forment un systeme nommé
dipole. Pour des charges opposées le champ se renforce entre les deux charges, pour des charges
de méme signe le champ s’annule quelque part entre les deux charges.

[/ /
| |
|

"2.1;:.';\\ /;/y \ “,‘_ :
=7\
7 1

F1GURE 14. Champ d’un dipdle pour charges opposées ou de méme signe
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2.4. Exemples supplémentaires. Voici quelques exemples supplémentaires:

FIGURE 15.

F1GURE 16. Exemple de champ entre 3 charges positives et 3 charges négatives



Tension et potentiel électrique (page 19/69)

3. Michael Faraday 1791 - 1867.

Physicien anglais né en 1791, Michael Faraday entrera dans I'histoire comme un expérimentateur
hors pair, contribuant énormément au développement de la théorie des champs et de 1’électro-
magnétisme. Par ailleurs chimiste, il découvrira les lois de 'électrolyse et on lui doit 'adoption
de termes comme cathode, anode, ion parmi d’autres.

De condition modeste, il ne regoit qu'une éducation sommaire et commence a l’age de 14 ans
un apprentissage chez un relieur. Il mettra son temps libre a profit en dévorant les livres présents
chez son employeur. Autodidacte, il parviendra a impressionner Humphrey Davy (1778-1829)
président du Royal Institution a Londres qui I'engagera comme assistant de chimie en 1813. 11
gravira ensuite les échelons pour étre finalement nommé professeur de chimie, une position lui
assurant un poste a vie au sein des institutions scientifiques de son époque

En 1831, Michael Faraday menera une série d’expériences dont la portée sera phénoménale:
Faraday démontrera qu’il est possible d’induire un courant électrique dans un fil conducteur en
faisant varier le champ magnétique agissant sur celui-ci, I'induction électromagnétique. Cette
découverte est a l'origine de toute la production d’électricité que nous utilisons actuellement :
quel que soit le type de centrales, toutes utilisent une forme d’énergie pour faire tourner des
turbines contenant des aimants qui induiront un courant.

FIGURE 17. Michael Faraday 1791 - 1867

4. Tension et potentiel électrique

1. Tension.
Une charge se déplagant, (au moins en partie), parallelement aux lignes d’un champ électrique va
ressentir une force agissant pendant son trajet, ce qui veut dire qu’il y aura un travail et donc un
changement d’énergie.

Si par exemple la charge s’éloigne de l'autre charge engendrant le champ elle va :

e soit devoir travailler contre une force électrostatique qui l'attire, dans ce cas elle va
acquérir de I’énergie potentielle électrique.

e soit travailler avec une force électrostatique qui la repousse, elle va dans ce cas perdre
de I'énergie potentielle électrique et la transformer en énergie cinétique, thermique, de
rayonnement ...
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On peut démontrer que le travail de la force est proportionnel a la charge se déplagant et qu’il
est indépendant du chemin: Ar x q = Ap = q-U. Il existe donc une grandeur constante
U entre deux points déterminés de 'espace qui permet de calculer I’énergie perdue/recue lors du
déplacement:

Ap

q

U

Cette quantité nommée U est la tension en Volt [V] = [Z£] d’aprés Alessandro Volta (v. plus
loin).

Si une charge de 1 C' p.ex. se déplace d’un point a un autre entre lesquels regne une tension
de 100 V, elle peut soit gagner soit perdre 100 J d’énergie.

La force de Coulomb étant conservative, le changement de 1’énergie potentielle ne dépend
donc pas du chemin emprunté, mais uniquement des points de départ et d’arrivée.

2. Potentiel électrique.

2.1. Définition. S’il existe une tension de U Volt entre deux points A et B de l'espace, cette
tension représente la différence des potentiels électriques de chaque point: U = AV = Vg — V), ou
V' est le potentiel électrique en un point.

Le potentiel en un seul point, p.ex. A, est défini par rapport a la terre qui, par définition,
possede un potentiel de zéro Uy =V, — Vi

On peut donc associer a chaque point de l'espace une valeur (non dirigée) représentant le
potentiel électrique a cet endroit. Etant donné que la direction ne joue aucun role, il s’agit d'un
champ scalaire et non pas d’'un champ vectoriel.

2.2. Potentiel d’une charge ponctuelle. Le changement de 1’énergie potentielle d'une charge ¢
se déplacant d’un point P; a un point P, dans le voisinage d’une charge ponctuelle () est donné
par :

1 1
AgpotelZQ'U:q(VPQ_VPl) :kQQ (___>
rp, p
Il en suit que le potentiel a une distance r de la charge @) est
V(r)==k- Q

r

F1GURE 18. Analogie gravitationnelle pour le changement d’énergie potentielle
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REMARQUE 4.1. Par définition,

1 Q¢ 1 Qq

Par conséquent,

Foe = —grad(apotel) = -V ( Qq ) _ Qq 7

471'80 1/332—|-y2—|—22 471'60 ||F||3
qui est bien répulsive si les charges ont le méme signe et attractive dans le cas contraire.

Rappelons que I'énergie potentielle de gravitation est donnée par

Mm Mm

Epo rav:_G_—»:_G
roLe 7] Vit yt 4 22

Par conséquent,

ﬁgrav = _grad(gpotgrav) = 6 (G Qq > =-G Qq r

a2 +y?+ 22

qui est toujours attractive.

2.3. Plaques paralléles. Soit deux plaques paralleles conductrices séparées par du vide (ou de
’air), que I'on charge de signes opposés. Le champ qui s’établit entre les deux plaques est uniforme,
c’est a dire qu’il est le méme partout dans ’espace entre les plaques.

Pour déplacer une charge, (p.ex.) positive, contre le champ électrique d’une plaque a l'autre,
il faut exercer une force constante F' sur la distance d séparant les deux plaques. Le champ est
toujours parallele au déplacement.

A€t = —Ap, = —qE -d-cos(180°) =q-E-d=q-U=U=FE-d

Q

p N

\JE L

FiGURrE 19. Champ entre deux plaques paralleles
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F1GURE 20. Particule chargée accélérée entre deux plaques paralleles
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3. Accélération d’une charge.
Une particule chargée pénétrant dans le champ entre deux plaques peut étre accélérée de
maniere uniforme, dans ce cas I’énergie potentielle perdue représente le gain d’énergie cinétique

Agcin = - Agpot

1
.m.v2_§.m.'v(2) = ‘qU|

2-lq-U
v o= \/—|q |+v§
m

Remarquons que ce résultat est vrai méme si le champ n’est pas uniforme. Ce résultat ne
dépend pas de la distance d qui sépare le pole + du pole -.




Tension et potentiel électrique
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4. Alessandro Volta 1745-1827.

S icycm :& /w-m‘” Nr
‘ n-.);é v, ,,MM aBinis,
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FicURE 22. Article de Volta décrivant son invention
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CHAPITRE 2

Fonctions a plusieurs variables

Les notes de cours qui suivent ne contiennent ni théorémes ni démonstrations. Elles constituent
une introduction non formelle a ’analyse des fonctions a plusieurs variables destinée aux éleves
du college de Geneve en OS Physique-Application des mathématiques.

1. Dérivées partielles
Considérons, a titre d’exemple, la fonction f : R? — R définie par

flay) =@+ =17 +1

Son graphe est une surface de R3. On peut visualiser son graphe avec Octave. L’exécution du
script

x=
y=-1.1:0.1:1.1;
[xx,yy]=meshgrid (x,y) ;
zz=(xx."24+yy."2—-1)."241;
surf(xx,yy,zz)

axis([—1.1 1.1 —1.1 1.1 0 4])
xlabel ( )

ylabel ( )

zlabel ( )

view (66 ,26)

print exemple.png

donne la graphe de la figure 1.

=
PN
RN

A N
"" N
"“‘ N

FIGURE 1. Le graphe de la fonction f(x,y) = (2? +y?> — 1) + 1.
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Gradient (page 26/69)

On définit la dérivée partielle de f par rapport a la variable x, que I'on note

of
Iz ou 0, f

comme la dérivée de f obtenue en considérant y comme une constante numérique:

(axf)(xv y) = 2(ZL‘2 + y2 - 1>2$

De méme, la dérivée partielle de f par rapport a la variable y est obtenue en dérivant f par
rapport a y en considérant  comme une constante numérique:

(0y) f(z,y) = 2(2® +y* — 1)2y

2. Gradient
On définit le gradient de f, que I'on note
grad(f) ou i

comme la fonction de R? dans R? donnée par

Pour notre exemple, nous obtenons

@ = (o L) =t ()

Une courbe de niveau est une fonction dérivable ¢ : I C R — R? telle que f(c(t)) est
constante sur I, c’est-a-dire

0= 2 f(et) = — flert), e2(t)) = (D)) (1) + (8,.F)(Et))a ()
_(@HED) o (AN Z S e o
B ((8yf)(5(t>)> (6-2@)) = (V)(@®) (1)

ce qui montre que \Y, f est un vecteur perpendiculaire aux courbes de niveau.

Pour représenter graphiquement une fonction § de R? dans R?, on peut afficher en quelques
points (z;y) choisis du plan une fleche dont les coordonnées sont les coordonnées de g(z,y) et
dont l'origine est placée au point (z;y).

Par exemple, le script Octave

x=—1.3:0.2:1.3;
y=-—1.3:0.2:1.3;
[xx,yy]=meshgrid (x,y) ;
vx=4x(xx."24yy."2—1) .k xx;
vy=4x(xx."24yy."2—1) .*%yy;
quiver (xx,yy,vx,vy,5)
axis([-1.5 1.5 —1.5 1.5])
xlabel ( )

ylabel( )

print exemplegrad.png
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donne le graphique de la figure 2

Dans notre exemple, les courbes de niveau sont des cercles. Le gradient est donc bien en tout
point perpendiculaire a une courbe de niveau.

Le gradient (V)(f)(z,y) est nul si f(z,y) est un minimum ou un maximum local. De plus, il
“indique la direction de la plus forte pente”.

Dans notre exemple, f admet un maximum local en (0;0) et des minimas locaux sur le cercle

de rayon 1 centré a l'origine. Or

(VA)(z,y) =0 & z=0=youa’+y>=1

Un exemple bien connu de fonction de R? dans R est une carte de géographie qui donne
I'altitude de chaque point (z;y).

3. Intégrale curviligne

Soit @ [a,b] — R? continiiment dérivable et F' : R2 — R? continue. Alors, pour N un “grand”
nombre entier
b—a
N

P (Aot (i+1)9) —clatid)) e F(éla+1i6)) o § =

donne le travail Az de la force F pour un déplacement du point A = &(a) au point B = &(b) le
long de la courbe ¢ (voir figure 3). Or

N—1 N-1 . .
4 5 1)6) — da +i6) =
S (ea+ (i +1)8) — cla + i6)) o F(cla+i6)) = Aat(i+ >5) Aat+D) § F(aa+i6))0
=0 =0
1 o
o / N

FIGURE 2. Le gradient de la fonction f(x,y) = (z® +y*> — 1)* + 1.
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=

o F(

!

o

(a +i0))

A Aavid) i+ 1))

FIGURE 3. Le travail d'une force F.

qui est, si N est “suffisamment” grand (et donc ¢ “suffisamment petit”), une bonne approximation
de l'aire délimitée par le graphe de la fonction de R dans R définie par
clt) e F(e(t))

I'axe des abscisses et les droites verticales t = a et ¢ = b (en comptant négativement ’aire des
surfaces en-dessous de 'axe des abscisses). En d’autres termes, le travail est donné par 'intégrale

b N
Ap = / &) e F(E(t)) dt

La formule donnée ci-dessus dépend uniquement de la courbe reliant ¢(a) a ¢é(b) (c’est-a-dire
de C = ([a,b])). Elle ne dépend pas de la paramétrisation de C. En effet, soit s : [to, t1] — [a, D]
contintiment dérivable. Alors, h(t) = &(s(t)) est une autre paramétrisation de C. En d’autres
termes, ([to, t1]) = C. De plus,

R(t) = &(s(1)) - 5(t)

Alors, par la formule d’intégration par changement de variable, il vient

/t1}?@).ﬁ(ﬁ(t))dtzflé(s@))-s(t).ﬁ(a(s(t)))dtz/ H(s) o F(els)) ds

to
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Soit C4_,p une courbe de l'espace reliant A a B. Il suit de ce qui précede, que nous pouvons
définir

b
g/ ﬁ.dh:/‘ﬁ@u».awm
CasB a
pour une paramétrisation quelconque ¢: [a,b] — R? de C4_, 5.

Si la force F est conservative, c’est-a-dire s’il existe une fonction U : R*> — R contintiment
dérivable telle que

F(#) = —(VU)()

(dans ce cas la fonction U est appelée le potentiel) alors
b b
Aﬁ:/émoFﬁﬂM#:i/dﬂoWUWﬂhﬁ

— _/ %U(E(t)) dt = — (U(E0b)) — U(&a))) = U(A) — U(B)

ce qui montre que le travail de la force F' ne dépend pas du chemin reliant A = &a) & B = &(b)

4. Généralisations du théoréme fondamental du calcul différentiel

DEFINITION 4.1. On définit

Soit A : R? — R?. On définit
(1) la divergence de A par

-,

div(A) =V e A= 9,A+ 9,A+ 0,A

(2) le rotationnel de A par

(0,4 0.4,
rot(A) =V x A = | 0.4, — 0,45
0y Ay — 0, A

1. Formule de Green.

Nous commencons par la formule de Green. Soit D un ouvert de R? z et y simple, c’est-a-
dire défini par deux intervalles ouverts I, et I, et 4 fonctions continiment dérivables z. et y. de
R dans R telles que

D = {(x,y) c R?

ve L, y-(0) <y<y@)} = {(wy) R | ye &, 2w) <y <2 ()]

On définit le bord D de D en remplagant les inégalités par des égalités. Soit A une fonction
contintiment dérivable de R? dans R?. Alors (formule de green),

/T(Qé%—éﬁﬂ>dszi/ Aedl
p \ Oz oy 8D O
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En effet, en vertu du théoreme de Fubini et du théoréeme fondamental du calcul différentiel,
[ (%2 s
p \ Ox dy
() 9A ¥+(=) 94

:/ / Edat dy—/ / Qdy dx
yEly x(y) aﬂf z€l, y<x) ay

— [ el 0)n) = M) dy— [ (A (0) — Ailay- (@) da
yely

x€l,

Par définition,

oD oD O aD
Notons I, =|g, d[ et

Balt) = <y;(t)) S () = (y,il(t)), higra(t) = (9>d) = ﬁg\d(t) (?)

Avec ces notations,

d . y+(d)
[ = [ Ay @)i@ide s [ Add it dy
8DO g y<d)
g y—(9) -
+/ Ay, y4(2)) 04 ()1 dw+/ A9, y)hy(y)1 dy
d y+(9)

De maniere similaire, on montre que

/aDQAQ b = /EI (Ao(24y),y) — As(z-(y),)) dy

Yy
ce qui acheve la démonstration de la formule de Green.

2. Formule de Stokes.
Soit S une surface de R3. Pour simplifier, nous supposons qu’il existe un ouvert z et y-simple
D de R? et une fonction
. R — R?
(u,v) = o(u,v)

deux fois continiiment dérivable sur D, injective sur D telle que

S =o(D)

(0 est une paramétrisation de S). Nous supposons également que ||0,6 x 0,6| # 0 pour tout
(u,v) € D et que % est continue sur D.
Notons encore 7 : [0, 1] — 9D une paramétrisation du bord de D dans le sens trigonométrique

comme plus haut.
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Par exemple, pour une demi-sphere de rayon R centrée en l'origine, on peut prendre

D = {(u,v) eER? | u?+v° < R}
le disque ouvert centré en l'origine de rayon Ret
o(u,v) = VR? — u? — v?

Une demi sphere de rayon 2:

t=0:2%pi/20:2%pi;

r=0:0.1:2;

[tt, rr]=meshgrid(t,r);
xx=rr.xcos(tt);
yy=rr.xsin(tt);

zz=sqrt (abs(4d—xx."2—yy." 2)); o
surf(xx,yy,zz) - { T
axis([—-2 2 -2 2 =2 2],”cqual”)
print demisphere.png

Soit A une fonction de R? dans R? contintiment dérivable. Alors, on a 1'égalité (formule de

Stokes)
/<6></T> od§:/ Aedl
s as

En effet, notons

. o1(uo + ¢, vp) o1(uo, vo + 1)
f(t) = O'Q(U() + t, Uo) et U(t) = O'Q(Uo, Vo + t)
o3(uo + t, vo) o3(uo, vo + 1)
alors I’élément de surface est donné par
dS(up, vo) =& X U = aaaj (o, v0) | X %(UOWO) = %% - 8@%%
et
0A3(F(u,w))  9A2(F(uyw))
L B %y 9z dS;(u,v)
/ (V X A) e dS = / 8‘41(;;“1”)) _ 3A3(giu’”)) ° dSz(U,’U) du dv
o b BAg(a(u ) A1 (F(uw)) dSs(u,v)
Jy
0A _ 0Ay(a
:/ o(u,v) 2(a(u,v))> dSy(u,v) dudv
S 32
0A( _ 0A3(0
+/ 1(6(w,v) 3(J(u,v))) dSs(u,v) dudu
S 8x
8A2 d(u,v))  OA(F(u,v

_l’_
—

,v))
o ) dSs(u,v) dudv

:R1+R2+R3
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" R = /5 (W dSs(u,v) — %(yu’v))d&g(u,v)) du dv
Ry, = /s (%i‘u,v)) dSs(u,v) — %iu’v))d&(u,v)) du dv
Rs = /s (%;u,v)) dSi(u,v) — Wd&(u,v)) du dv

Calculons, par exemple,

B 0A1(0(u,v)) ) — 0A1(d(u,v)) . wdo
Rl—/s(—az dSafu,0) = “HE 2 asyu, )) dud

/ 0A, [ 0oz doy B doy Doz B 0A, [ 0oy Oos B 0oy 0oy dude
g\ 0z \ Ou Ov Ju v dy \ Ou Ov ou Ov
Par ailleurs,
S o ' d . do . doy .
[ Avd= [ Aoy 5 @enwa - [ (G + Gonn ) a
. () ) dt +

/ A,(F(F(1)))
/0 A3(F(F(1)))

N /0 ' A,EED)) (%W)* %% )

Calculons par exemple

1A1(5W(t))) 84217'1(t)+8_(;17'2(t) g [ Al(f
0 0 ) o \ 4,6

[ (iﬁ?gﬁi?@) v [ (o (a3 ) o (4w )

:/ (<8A1 80'1 i 6141 80’2 + 8141 80'3) 80'1 . (8141 80'1 i 8A1 60'2 i &41 (90’3) 80’1) ds
D

80'1 . 80'3 .
(%73(?5) + %72(75)) dt

or Ou Jy Ou 0z Ou ) Ov oxr Ov oy Ov 0z Ov ) Ou

8141 80'3 801 80'3 80'1 (9A1 80'2 80'1 60'2 80'1
= — - - dudv = R,
p\ 0z \ Ou Ov ov Ou Oy \ Ov Ju ou Ov
On démontre de la méme maniere les égalités pour Ry et R3, ce qui acheve la démonstration de
la formule Stokes.

ExXEMPLE 4.2. Notons

x ) —y
F= (y) et A(7) = (m) etE:{FER3
z 0

o

z=0cet ||F] = Va2 +y? < R} avec fy, = (0)

1
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La surface ¥ est un disque d’orientation 7x,. Alors
on={FeR’ ‘ 2 =0et |7l = Va2 + 37 = R}

et

—,

O 0
VxA=19,| x|z |=]|0 :>/(6>< )e dS = 27 RR?
0, 2 z

Par ailleurs,
/ Ao df:/ |l dl = R2xR = 2 2
[)Ne) ox

car sur le bord du disque,

cos(a) B — sin(«) .
F=R|sin(a) | = AF)=R| cos(a) | = [|A =R
0 0

3. Formule d’Ostrogradsky.
Considérons le cube

Q= Y —e<zr<cet —e<y<Lcecet —e<2z<¢
z

Notons les faces du cubes par

+e

0, = Y —e<y<eet —e<z<¢
z
x

0y = +e —e<z<ecet —e<z<¢
z
x

0,1 = Y —e<zxr<cecet —e<y<e
+e

et le bord du cube par
0 = 0Q,4 UOQ,_ U0, UIQ,_ U, U,

Pour tout point du bord du cube, définissons le vecteur normal a la surface par (voir figure 4)
(€1 sire 0,y
—e1 sire o,
€3 si T e 0y
—6é3  sire 8,
€3 sire 00,

L —€3 siTe i,
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ou (€1, €3, €3) désigne la base canonique

A]

1 0
0),ea=1|1]/,¢€s
0 0

Soit A : R® — R3. Alors,

/Qdiv( 1) dV =

FIGURE 4.

/6
y=—¢
€
“f
r=—¢
€
“f
r=—¢

/ |
zZ=—£

/ 6
zZ=—¢

/

&

=—c

(..

N

0, A1 dx> dz

-

=A1(e,y,2)—A1(—€,y,2)

U

N

VvV
=As(z,e,2)—A2(z,—£,2)

(L

—
=A3(z,y,e)—Az(z,y,—¢)

0y As dy) dz

0,As dz) dy

/ (DA + 0y As + 0. A3) dV = / 0, Ay dV + / 0,AsdV + / 0, A3 dV
Q Q Q Q

dy

dx

dx
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= / </ Ale,y,z) e é dz) dy — / (/ A(—e,y,2) e 6 dz) dy
y=—=¢ Zz=—¢ y=—=¢ z=—¢
= / (/ Alz,e,y,2) o6 dz) dx — / (/ Az, —e, z) ® ¢ dz) dx
= / ( Az y,e) o 63 dy) dx — / < A(z,y, —c) o & dy) dx
rT=—¢ y=—c¢ r=—¢ y=—¢

— [ AejfidS= | AedS
o0 o0

{

=:dS

La généralisation de cette égalité a un sous-ensemble (quelconque mais suffisamment régulier)
de R? est connue sous le nom de formule d’Ostrogradsky

/div( “)dvz/ AedS
Q o0

EXEMPLE 4.3. Notons
xr

7=y eth(F):FetQ:{FERS‘||F||:\/a:2+y2+22§R}
z

Alors
90 = {F e R?

7 = Va? +y? + 2% = R}
et

— — = -, 4 s <
VeA=3et /(VoA)dV:3§7rR3:47rR5
Q

Par ailleurs,
/ AdS = / |A|| dS = RATR? = 4w R®
o0 o






CHAPITRE 3

Forces conservatives

1. Définition

Une force F (7) est dite conservative si elle dérive d'un potentiel, ¢’est-a-dire s’il existe une
fonction U : R? — R telle que

(0:U)(r)
F(r) = =(VU)(F) = = | (9,U)(7)
(0:U)(7)

2. Travail

Le travail d’une force conservative F ne dépend pas du chemin parcouru. En effet, notons 7(t)
I'horaire d’une masse ponctuelle. Notons A = 7(ty), B = 7(t1) (avec to < t1) et C la trajectoire de

m entre A et B, c’est-a~dire, C = 7([to, t1]). Alors, le travail de Fle long de C est donné par

AF:/Bﬁ. il = /tl F((t)) o Fdt = —/tl(ﬁUW(t)).mt: —/: %U(f(t))dt

A to to

qui est indépendant du chemin C reliant A a B.
Réciproquement, si le travail d’une force ne dépend pas

du chemin parcouru, on peut montrer, sous certaines hy-
potheses, qu’elle est conservative. L’étude dans un cadre
plus général de cette implication a donné lieu a une théorie
mathématique connue sous le nom de cohomologie de de
Rham qui a été développée par le mathématicien (et alpin-
iste ) vaudois Georges de Rham (Roche 1903 - Lausanne
1990) Georges de Rham

3. Exemples et contre-exemples

1. La gravitation.

Considérons deux masses M et m sphériques, homogenes et isotropes (comme c’est le cas en
bonne approximation, par exemple, pour la Terre, le Soleil, la Lune, ...). Rappelons que la force
de gravitation exercée par la masse M sur la masse m est donnée par

Mm Mm

FM = — = = = — ==
/m 172 117 GE

ou 7 désigne la position de la masse m relativement a un référentiel attaché au centre de la masse
M.

37
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On définit le champ de gravité de M par
M

1711 |

|~

§M(f3 =—-G

L

|
Ainsi,
F M/m = mga (7)
On définit le potentiel de gravitation de M par

V() = -Gk

7]
et I’énergie potentielle de gravitation de m par

U=mV(r)

Un calcul simple donne

(0,V) =0, <_G M > =0, <—GM (372 +y° + 22)7%>

/.’L'2+y2+22

:GM% (m2+y2—|—z2)_% (0,%) :GM% ! 32:10:@%?@
( /22 2 + 22> [|7]]
Par conséquent,
M
) (0:V)(7) G Mo(* Mo
—(VV)(#) == (0,V)(") | =— Gmsy = = | Y =-G 437“:9(7#)
171 171]
(0:.V)(7) G2 z

et
Fyipm = —(VU)
ce qui montre que la force de gravitation est conservative.

REMARQUE 3.1. L’énergie potentielle de gravitation (qui est négative) d’une masse m en un
point A dans le champ de gravitation d’une masse M est égale au travail de la force de gravitation
pour un chemin C4_,,, allant du point A a l'infini:

/ FM/m-df:—/ (VU)o dl = — (U(F)
CA~><>o CAHOO

En d’autres termes, 'énergie potentiel est égale a I'opposé du travail qu’il faut fournir pour
amener m de A a l'infini.

) =) (U = U
A N——



Energie mécanique (page 39/69)

2. La force électrique.
D’apres la loi de Coulomb, la force qu'une charge électrique ¢; exerce sur une charge g, est
donnée par
= e O F = 1) —
/e — 2 1= ==
Ameo 712 7l

et ou 77 et r5 sont les positions des charges ¢; et ¢o. Hormis les constantes, 1’expression mathé-
matique de cette force est identique a celle pour la force de gravitation. Par conséquent, elle est

aussi conservative. En effet,
1 q1

}71411/612:_vv;11'q2 Ol\lv‘h:%‘w

3. Forces de frottement.
Les forces de frottement ne sont pas conservatives car leur travail dépend de la trajectoire (de
sa longueur). Par exemple, le travail d'une force de frottement constante est donné par

Afrot = HFfrotH L
ou L est la longueur de la trajectoire.

4. Energie mécanique

DEFINITION 4.1. Pour une masse m subissant une force conservative F' = —VU, on définit
I’énergie mécanique par

1
Emec = §m||6||2 +U

c’est-a-dire I'énergie cinétique plus I'énergie potentielle.

THEOREME 4.2. Pour une masse m subissant une force conservative et éventuellement des
forces normales a sa vitesse en tout point de sa trajectoire (i.e. perpendiculaires a sa trajectoire),
[’énergie mécanique est conservée: pour tous les temps tg < ty,

Smlo) | + U(7(t0) = gmllo(e)|? + U (1)

DEMONSTRATION. En dérivant par rapport au temps, on trouve

dEpec _ 1 (% (0 (1)?) + % (v,(8)?) + % (vz(t)2)) + %U(a:(t),y(t), z(t))

a2
_ %m (204 ()0, (£) + 20, (), (t) + 20, (£)1,(£))

+(0,U) - x(t) + (0,U) - y(t) + (0.U) - 2(1)

:<ﬁ+ﬁL)oﬁ—F0ﬁ:ﬁﬂT+ 1017—ﬁ027:()

ce qui montre que 1’énergie mécanique est constante au cours du mouvement. O
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Rappelons le théoreme de ’énergie cinétique:

THEOREME 4.3. Le travail de la force résultante agissant sur une masse m est égal a la
variation de son énergie cinétique: soit C4_,p la trajectoire d’une masse m allant d’un point A a
un point B et subissant une force résultant F,.s. Alors

Aﬁ = Fres o dl = —7’7’LH/UBH2 - _mHUAH2
res 2 2
cA—>B

DEMONSTRATION. Soit 7 [tg, t1] — R? (2 fois contintiment dérivable) I'horaire de la masse m
(en particulier 7([to, t1]) = Ca—p avec 7(tg) = A et 7(t1) = B). En vertu du théoreme fondamental
du calcul différentiel, on trouve

- - | . t o
A :/ Fres.dzz/ Fres(t)of(t)dt:/ mc?(t)-ﬁ(t)dtz/ me L (@(t) o a(t)) dt
g1 L Loolls
= [ (3P d= Gl - Jmlete

O

De ce qui précede, nous déduisons que

THEOREME 4.4. La variation de l’énergic mécanique d’une masse m subissant des forces
conservatives, des forces qui ne travaillent pas (1.e. perpendiculaires a la trajectoire en tout point)
et des forces mon conservatives est €gale au travail des forces non conservatives: soit Cy_,p la
trajectoire d’une masse m subissant une force conservative F| = —ﬁU, une force qui ne travaille
pas fl et une force non conservative ﬁ” (i.e. Froy=F + ﬁ + F’”) Alors

AE'mec = LmecB — EmecA = AF‘H = / F)H b df

CasB

DEMONSTRATION. En vertu du théoréme de I’énergie cinétique, il vient

1 1 L - Loy o
gllP = gl = [ Feedi= [ (F4fieF)ed
A—B A—B

:/ Fledl+ ﬂodf+/ ﬁ.df:—(U(B)—U(A))+/ Fed
JA=B JA=B , A—B A

—B

-~

U(B)-U(A) =0

L1 1.
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A—B 2 2



CHAPITRE 4

Equations de Maxwell

En 1865, le physicien écossais James Clerk Maxwell (1831-1879) publie sous la forme d’un
systeme d’équations (initialement 20 équations a 20 inconnues, réduit par la suite par Heaviside &
un systeme de 4 équations que nous verrons plus loin) une synthese des diverses lois expérimentales
concernant 1’électricité et le magnétisme établies par ses prédécesseurs.

1. Champs électrique et magnétique

Les atomes (~ 1 angstrom=0.1 nm) sont électriquement neutres. Ils sont composés de partic-
ules neutres (les neutrons dans le noyau) et de particules chargées: les protons (+) et les électrons
(-). Un courant est un mouvement de charges (par exemple d’électrons). Un courant de 1 ampere
(A) correspond & un débit de charges de 1 coulomb (C) par seconde. La charge de 1’électron et du
proton vaut (au signe pres) 1.602- 107 C. 11 faut donc 455 - 10 ~ 6.24-10'® électrons pour faire
un coulomb et un débit de 6.24 - 10'® électrons par seconde pour faire un courant de 1 ampere.

Une particule de charge g se déplacant a vitesse v dans un référentiel galiléen R subit une force

(dite de Lorentz) donnée par

—

F=q <E + U X E)
ou E est le champ électrique ou se trouve la charge et B le champ magnétique.

2. Champ électrique

Le champ électrique est une propriété du vide. Il est décrit dans le référentiel d’inertie R
par une fonction

E:R* - R®
(Z,t) — E(Z,1)
On mesure la valeur du champ électrique en 7 au temps ¢t en placant une charge immobile ¢
de masse m en T au temps t et en mesurant son accélération @ (si le champ de gravitation est
négligeable). Le champ électrique est donné par (il suffit de remplacer dans 'expression pour la

force de Lorentz @ par 0 et F par ma):

E(@t)=—a
q
ke 2
Les unités du champ électrique sont: [E]=1 ¥t =1¥ =18 =1 if = 1%’3

3. Effet du champ électrique sur la matiere
3.1. Matiere conductrice.
Il s’agit de matiere contenant des charges libres, comme par exemple
e les métaux: 1 a 2 électrons libres par atome (Ex: Cu, Ag, Au),
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e les électrolytes: liquides contenant des ions (Ex: Na™, Cl7),
e les gaz ionisés (Ex: Ne™)

Lorsque 'on place un conducteur dans un champ électrique E:xh il se produit un phénomene
de polarisation. Les charges + s’accumulent sur une face du conducteur et les charges - sur la face
opposée. Il apparait alors dans le conducteur un champ E qui s’oppose au champ E... et qui fini
par le compenser exactement. Le champ résultant E est alors nul

=Byt B =0

et la séparation des charges s’arréte. Il y a équilibre. Ce phénomene est illustré sur la figure

1. Les symboles © représentent les électrons libres. La source du champ E’ sont les charges de
polarisation —(@) et +Q.

- - =
® o%g° N 3. s ?

Sl e B et e — +— - -
e © © N by 3| Bexr - E=p : Eexe¢
€ 9 o = ¥ g 2 i

FiGure 1. Effet d’'un champ électrique sur la matiere conductrice. (Dessin: College de Candolle)

Le phénomene de polarisation a plusieurs conséquences.

(1) A l'intérieur d’un conducteur (plein ou creux) en équilibre électrique (pas de charges en
mouvement), le champ électrique est nul (c’est la cage de Faraday).

(2) A la surface d'un conducteur, le champ électrique est normal a sa surface, car s'il y
avait une composante tangentielle, alors les charges se déplaceraient sur la surface du
conducteur et 1’équilibre ne serait pas atteint.

(3) Toute la charge électrique d’un conducteur en équilibre est localisée a sa surface. Il n'y a
donc pas de charge a l'intérieur qui est accumulée.

Les charges + et - se séparant dans un conducteur créent un champ en dehors qui se super-
pose au champ extérieur et le déforme (voir figure 2, gauche). Cette déformation du champ est
particulierement évidente pour un conducteur comportant une pointe. La densité des lignes de
champ est alors importante sur la pointe: c’est l'effet pointe (voir figure 2, droite).

FIGURE 2. A gauche: déformation du champ par une sphere métallique placée dans
un champ électrique uniforme. A droite: effet pointe. (Dessin: College de Candolle)

3.2. Matiere isolante.
I1 s’agit de matiere ne contenant pas (ou tres peu) de charges libres. On la désigne généralement

par “matiere diélectrique”. L’influence du champ électrique va donc se manifester sur des charges
liées, soit des couples de charges + et -.
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Considérons pour commencer I’action du champ sur un systeme simple: le dipole (voir figure
3). Sile champ est uniforme, les forces I, et F_ sont égales en direction et en intensité et le

dipdle est sollicité par un couple de forces (un moment) qui vaut (relativement au centre de masse
du dipole):

M:fxﬁ+:qfxﬁzﬁxﬁ
ol
p=ql
est appelé le moment dipolaire électrique. Remarquons que

IM]| = ql]| Ef| sin(e)

Le moment M agissant sur le dipole a tendance a 'orienter parallelement au champ E. Quand
le dipdle est aligné avec le champ électrique, les forces électriques déforment le dipole, c’est-a-dire

augmentent la distance entre les charges. Si la distance [ varie, alors le moment dipolaire p’ varie
aussi.

.‘.;’ *‘ )F* > gy -':
7 _4;< i ;——‘__:__.L—»f; 3
E -

F1GURE 3. Effet du champ sur un dipodle. (Dessin: College de Candolle)

Si le champ E nlest pas uniforme, par exemple s’il croit dans le sens des lignes de champ, il
découle que || F|| > [[F_|| et le dipole est entrainé dans le sens du champ. Le dipdle est toujours

entrainé dans le sens ou le champ augmente en intensité (la ou les lignes de champ se resserrent,
voir figure 4).

~

r"-‘;m;‘.\‘;_ .

F1GURE 4. Dipole dans un champ non uniforme. (Dessin: College de Candolle)

Quand un atome est placé dans un champ électrique, il devient polarisé et acquiert un mo-
ment dipolaire électrique induit par la direction du champ. Ceci résulte de la perturbation de la
répartition des électrons autour du noyau causée par le champ électrique.

Beaucoup de molécules possedent un moment dipolaire permanent (voir figure 5). Quand une
molécule possede un moment dipolaire permanent, elle tend a s’orienter parallelement au champ
électrique en raison du couple auquel elle est soumise.
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4. Champ magnétique
De méme, le champ magnétique est une propriété du vide. Il est décrit par une fonction
B:R* - R?
(#,t) — B(Z1)

On mesure la direction du champ magnétique en & au temps ¢
en plagant en 7 au temps ¢ une boussole. L’intensité du champ
magnétique peut se mesurer par exemple en placant une charge g
de masse m avec une vitesse U parallele au champ électrique et en
mesurant le rayon de courbure 7 de sa trajectoire (le rayon du cercle
osculateur). Dans cette situation, la force centripete subie par la
charge est donnée par (en notant v = ||v]|, B = Hé” et a angle
entre ¥ et B)

2

. " L o= v , m v
|mad — qE|| = |q|[|v x B|| = m— = |gsin(a)[vB = B= ———"7——
r lg| | sin(«)|

Finalement, le sens du champ magnétique, est déterminé par la “regle de la main droite” ! Les

l;gfnsl =1 %. De plus, 1 T=10*

gauss (G). Par exemple, le champ magnétique terrestre Vaut ~0.5 G et le champ principal de
I'IRM des HUG vaut 3 T.

unités du champ électrique sont: [B]=1 tesla=1 T=1 g = 1

5. Densités de charge et de courant

Dans un référentiel galiléen R, on note p la densité de charge (unités: %) et j la densité

de courant (unités: %): la charge électrique ¢ contenue dans une partie V' de I'espace est donnée

par
0= [ oy
174

et le courant [ traversant une surface S est donné par
I= / j(Z) e dS
s

REMARQUE 5.1. Par convention, le courant va de la borne positive d'un générateur a la borne
négative. Quand les porteurs de charges sont des électrons, ceux-ci se déplacent dans le sens
contraire du courant. Le vecteur j indique le sens des charges positives.

L ¢ Aokt
e 0 E

1lo5
P -3 g
(p = 3.43 . 10" %bm)) -

plwg;2 a0t o[j:bm?

FIGURE 5. Exemples de molécules ayant un moment dipolaire permanent: HCI
(p ~ 3.43-1073°C - m) a gauche , H,O (p ~ 6.2 -1073°C - m) & droite. (Dessin: College
de Candolle)
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Le courant électrique est défini comme le mouvement de charges électriques, typiquement a
I'intérieur d'un corps conducteur. L’intensité du courant I est le nombre de charges traversant
une section du corps en un intervalle de temps At (voir figure 6):

_ &g
At

N.B. Pour des raisons historiques le courant conventionnel représente un mouvement de
charges positives. Etant donné que dans un solide il s’agit toujours du mouvement d’électrons

négatifs, les charges se déplacent en fait dans le sens opposé au courant conventionnel, comme on
peut voir sur le croquis suivant.

C
1 unité — = Amperes A
s

FIGURE 6. Courant électrique

DEFINITION 5.2. Soit A : R3 — R3 et S une surface orientée. On définit ® le flux de A a
travers la surface orientée S, par
o = / AedS
S

ExXEMPLE 5.3. Considérons, a titre d’exemple, un fluide, de masse volumique constante p,
dans un tuyau. Soit ¥ : R* — R3 la fonction (appelée champ de vecteur vitesse) qui en chaque
point ¥ = (z,y,2) du tuyau donne la vitesse U(7,t) = ¥(z,y, 2,t) de la particule du fluide se
trouvant en ce point 7 au temps t. Le flux de ¥' a travers une surface S coupant le tuyau

est proportionnel au débit:

D = p® unités: kg/s

En effet, considérons la situation simple illustrée sur la figure 7. Le champ de vitesse est constant
et la surface est plane. En un temps ¢, la masse de fluide traversant la surface S vaut p-V ou V'
désigne le volume du parallélépipede de la figure 7. En d’autres termes

D= M = pcos(B)Sv = pS e ¥

ou S est le vecteur normal & S dont la longueur est égale a la surface S. Remarquons que = § —a.
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6. Equations de Maxwell

Les équations de Maxwell sont données par

VeE=1" (M1)
€0
VeB=0 (M?2)
VxE=-_B (M3)
c2€><§=§+€l (M4)
0

Par conséquent,
- - O0FE, 0Fy, O0F;
Vel = + +
ox dy 0z
9Bs _ 0B
oy 0z
VxB=|2%_2:
9By _ 9B1
oz oy

Finalement, c est la vitesse de la lumiere dans le vide
c=299'792'458 ~ 3 - 10° m/s
et ¢ est la constante dite de permittivité diélectrique du vide,
A -
g0 = 8.85419 - 10~ V—S

On utilise aussi la constante

F1GURE 7. Flux
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Ces valeurs sont valables pour des charges dans le vide. Si les charges ne sont pas dans le vide,
la constante ¢y doit étre remplacée par la constante diélectrique € du milieu qui les sépare. La
constante € vaut, par exemple,

e dans l'eau: ¢ = 80¢g

e dans le verre e =2 a 5 X &.

Le principe de conservation de la charge électrique s’énonce
Vej=—p

Rappelons que la force subie par une charge est donnée par (force de Lorentz)

—

F:q<ﬁ+17><§>

7. Interprétation des équations de Maxwell: électrostatique

Nous allons maintenant étudier le contenu physique des équations de Maxwell, en commencant
par I’équation qui traduit le principe de conservation de la charge. Nous examinerons ensuite en
détail la premiere équation de Maxwell qui concerne uniquement le champ électrique.

7.1. Conservation de la charge.
Commengons par interpréter la loi de conservation de la charge. Par la formule d’Ostrogradsky,

on trouve
qz/pdvz—/(ﬁoj) dV:—/ jedS
\% \%4 oV

ou ¢ représente la charge enfermée dans le volume V. En d’autres termes, la variation de la
charge dans un volume est égale (au signe pres) au flux du courant électrique a travers la surface
entourant ce volume: ¢ varie seulement si des charges entrent ou quittent V. Imaginons que ¢ soit
positive et augmente (des électrons quittent V). Alors, le flux du courant a travers la surface est
négatif, puisque le sens j est, par convention, opposé au déplacement des charges négatives.

8. Equation de Maxwell M1

Avec la formule d’Ostrogradsky, la premiere équation de Maxwell devient

- /Qﬁdv /(ﬁ-ﬁ) dvz/mﬁodﬁ

ou ¢ est la charge totale enfermée dans le volume 2. En mots, le lux du champ électrique
a travers une surface fermée est égal, a une constante pres, a la charge enfermée a
Pintérieur de cette surface. Ce résultat est du a Gauss (1777-1855) et est connu sous le nom
de théoreme de Gauss. . .

Si V' est une sphere de rayon r et si la densité de charge p est homogene, alors £ e dS est
constant et il vient

q 2 1 q = 1 q -
—=F dS = E(r)4 = Fr)=——= = F -
. (7) . ()4mr (™) P () = pr—Ll

C’est la loi de Coulomb pour une charge ponctuelle ou pour une charge sphérique homogene de
rayon R avec R <.

REMARQUE 8.1. Quelques remarques s’imposent.
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(1) Si plusieurs surfaces enferment la méme quantité de charges, alors le flux total de E A
travers toutes ces surfaces sera le méme et ceci quelle que soit la facon dont sont distribuées
les charges a l'intérieur des surfaces.

(2) Les charges situées en dehors d'une surface fermée n’ont aucune contribution au flux total
de E & travers elle. .

(3) Si une surface n’enferme aucune charge, le flux total de E (créé exclusivement par des
charges extérieures a S dans ce cas) sera nul a travers cette surface.

(4) Sil’on change la distribution géométrique a U'intérieur d’une surface, on ne change par le
résultat du flux total de E, mais certainement la valeur locale de E en un point P de la
surface.

8.1. Potentiel électrique et tension électrique.

DEFINITION 8.2. On définit le potentiel électrique dans le champ d’une charge ¢ (ponctuelle
ou sphérique homogene de rayon R < r) par

1
U(7) = T g unités: 1V (Volt) =1 %

et la différence de potentiel (ou tension électrique) entre deux points 74 et 7' par
UAB - U(’I?A) - U(FB)

REMARQUE 8.3. Quelques remarques s’imposent a nouveau.

(1) La force de Coulomb est conservative car
Bu(? + 9% + 22) 72 . —32x(a® +y* + 22)
Oy(a® +y* +2°)72 | = —— | =52y(2® + 17+ 2%)
O.(x* +y*+ 22)” O\ 1220 + 2+ 22

VU = —

|
—_
IS
=y
I
=,
—~
3

[T S

471'80

Nous verrons plus loin que ceci est vrai uniquement pour un champ électrique F statique.
(2) Pour un chemin quelconque C4_,p reliant les points 74 a 7'g, il vient

—

/ Eedl = —/ (VU)o dl = — (U(7) — U(F4)) = U(Fa) — U(Fg) = Uap
CasB Casn

(3) Le vecteur E donne le sens et la direction du mouvement des charges positives. De plus,
comme pour tout champ de vecteur, les équipotentielles sont en tout point perpendicu-

laires au champ FE.
(4) En particulier, remarquons que

A—oco

ol oo désigne un point a l'infini.
(5) L’énergie potentielle d'une charge () placée dans le champ E est donnée par

gpoteleQ(FA) = Q : U(FA)

Elle est égale au travail de la force électrique quand la charge ) va du point 74 a l'infini.
Notons ¢ la charge qui engendre le champ E. Si g et () ont le méme signe, ce travail est
positif et I’énergie potentielle de @ est positive (il faut fournir un travail pour amener Q)
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de l'infini & 74 car la force électrique est répulsive). En revanche, si ¢ et @ sont de signes
opposés, alors I’énergie potentielle est négative (il faut fournir un travail pour amener @)
de 74 a l'infini car la force électrique est attractive).

(6) Finalement, remarquons que

—

QUAB = QE odl = — (gpoteleQB - 5poteleQA) = _AgpoteleQ

Si @) est positive et que le déplacement se fait dans le sens du champ électrique E (i.e.
Eedl > 0), I'énergie potentielle de @ diminue (il faut fournir du travail pour amener @ de
B a A). SiQ est négative et que le déplacement se fait dans le sens du champ électrique

E, I'énergie potentielle de () augmente (il faut fournir du travail pour amener @) de A &
B).

8.2. Exemples.

Nous allons montrer maintenant comment la forme intégrale de la premiere équation de
Maxwell (le théoreme de Gauss) permet de calculer le potentiel engendré par des corps chargés
de différentes formes.

EXEMPLE 8.4. Considérons le cas de deux spheres concentriques métalliques comme sur
la figure ci-dessous.

Le champ E est isotrope. Imaginons une sphére intermédiaire (en
rouge sur la figure). En vertu de la premiere équation de Maxwell,
seule la charge positive compte pour le calcul du flux de E & travers
la surface rouge. Il vient

Q = 1 Q.
E 4 2 - — E = —
(r)4mr €0 = E@) 4req 7“3r

et

R R Ry
LI — 1 ]_ ]_ 1 1
U+—/ Eodl—/ %dr:— QI __ @ <___>
Ry r, 4meqr dmeg T Ry dreg \ R1 Ry

EXEMPLE 8.5. Considérons un fil droit (un cylindre) chargé infini de rayon R et de densité

linéique de charge A = % (unités: C/m). Imaginons un cylindre dont I'axe de symétrie est

confondu avec le centre du fil (en rouge sur la figure) de rayon r et de hauteur .
En vertu de la premiere équation de Maxwell, nous trouvons que

. 1 Q17 1 A7 -
(I)ZE(FA)QWTZZQ = E(FA): Q——A: ArA -
€0 2meg L rara  2mEgraTa 1
\ , ; . fid A 17
ou nous avons noté ry = ||7al|. En effet, pour des raisons de ¢
symétrie, la direction du champ FE est orthogonale a 'axe du fil. r 7 P
Par conséquent, le flux a travers les deux disques du cylindre est nul. .
De ce qui précede, il suit que /]

U(F2) = ———Mn(ra) car B(7a) = —(VU)(F)

2mey (Dessin: College de Candolle)
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EXEMPLE 8.6.

Considérons deux cylindres (de hauteur infinie) de rayon Ry et Ry o Al
comme sur le dessin ci-contre. Pour des raisons de symétrie, le champ mia
électrique est orthogonal a 'axe. En vertu de la premiere loi de - ,..* R
Maxwell, seules les charges a l'intérieur d’une surface contribuent au - . Al
flux du champ électrique a travers cette surface. Par conséquent, le | | -

champ en 74 est le méme que pour un fil chargé infini
(Dessin: College de Candolle)

EH(_' ) 1 A7y
Ty) = —_—
A 2TEQTAT A

ou 74 = ||74]|. Par ailleurs, la tension électrique entre les deux cylindres est donnée par

B 1 1 Ry
Us-= 2meg In(f1) < 2meg ID(R2)) 27 i (R1>
Q

EXEMPLE 8.7. Considérons une plaque infinie chargée de densité surfacique de charge o = 3

(unités: C/m?). Pour des raisons de symétrie, le champ est perpendiculaire & la plaque. Imaginons
un cylindre dont I’axe de symétrie est perpendiculaire a la plaque (en rouge sur la figure) de hauteur
214 et de rayon R (ol 4 = ||7a|).

En vertu de la premiere équation de Maxwell, nous trou-

vons que "A

. Q P 1 Q 74 1 7a "
(Fa)m €0 () €02mR2 71y 25007",4
B} el P
En effet, la direction du champ E étant orthogonale a la :-——p. A
plaque, le flux a travers le bord du cylindre perpendiculaire 4
a la plaque est nul. De ce qui précede, il suit que %_.(,
1 v
U(ry) =——
(7'a) 2%, orA

(Dessin: College de Candolle)

EXEMPLE 8.8. Considérons deux plaques infinies paralleles chargées de densité surfacique de
charge o = ¢ (unités: C/m?).
Comme nous I’avons vu ci-dessus, le champ da a une plaque
ne dépend pas de l'éloignement. Entre les plaques, les
champs dus aux charges positives et négatives s’ajoutent,

en dehors, ils s’annulent: R

R 4
mt

—

1 — —

E(r) = ~ o~ entre les plaques et E() = 0 en dehors
Eo T

ou r = ||r]|. Par conséquent,

od -
U+f=U(0)—U(d)=g et B =|[E| =

T N  » *
0y

U,_ 8
d
(Dessin: College de Candolle)

8.3. Condensateurs et capacité.
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Dans les exemples qui précedent, on remarque que la tension U, _ est proportionnelle a la
charge. On définit la capacité comme

C= % >0 unités: % = F (Farad)

En pratique, on utilise les unités: uF = 107 F, nF= 107" F, pF= 10712 F, etc.
La capacité C' dépend uniquement de la géométrie du corps et de sa constitution. Par exemple,
un systeme de deux plaques métalliques séparées par de I’air n’aura pas la méme capacité que le

méme systeme mais avec deux plaques séparées par un matériau diélectrique. Dans ce cas, dans
le calcul du champ, il faut remplacer la constante ¢y, la permittivité diélectrique du vide, par

E=¢€r"€p
la permittivité diélectrique du matériau (e, est la permittivité diélectrique relative du ma-
tériau).

EXEMPLE 8.9. Donnons quelques exemples de capacités.

(1) Capacité d'une sphere métallique de rayon R par rapport a la matiere environnante
suffisamment éloignée:

Q Q
C = —— = — 47T€0R
’AU‘ 47T§0R

(2) Capacité de deux spheres concentriques de charges +@Q et —Q:
Q R Ry
C=—==dmeg—Frx
AU~ TR, — R,
(3) Capacité de deux cylindres concentriques de charges +@Q et —Q et de longueur [:
Q 27T€0l

|AU| N In (g—f)

C:

(4) Capacité de deux plaques paralleles de surface S de charges +Q et —@Q et a distance d
I'une de l'autre:

S
C—EOE

On peut associer des condensateurs pour en former un nouveau. Par exemple en série (voir
figure 8, a gauche). Dans ce cas, chaque condensateur porte la méme charge puisque I'armature
négative de I'un est reliée a 'armature positive du suivant. La différence totale de potentiel vaut:

Q  Q Q 1 1 1
Uy = Uy + Uyt b U, = = 4 o p 4
tot 1 +Us+ -+ C1+02+ +Cn Q C1+02+ +Cn
Ainsi, des condensateurs en série sont équivalents a un condensateur de capacité Ceguip ser donnée

par
1 1 1 1

Oequiv ser B Cvl C12 o On
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On peut aussi associer des condensateurs en parallele (voir figure 8, a droite). Dans ce cas

Qit =1 +Q2+ - +Q,=ClU+CU+---+C,U=U(C, +Co+---+Cp)

Ainsi, des condensateurs en parallele sont équivalents & un condensateur de capacité Cegys, | donnée
par

Cequiv” :Cl+02++cn

REMARQUE 8.10. Remarquons que dans chaque cas, la capacité croit avec la permittivité

diélectrique € si on place un diélectrique entre les armatures métalliques.
Considérons par exemple un condensateur constitué de deux plaques par-

alleles. On peut mesurer la tension électrique avec un voltmetre (voir +Q -®
figure ci-contre). On constate expérimentalement que la tension décroit
si la distance entre les plaques diminue. Il faut effectuer un travail pour
éloigner les plaques. Quand la distance d diminue, la capacité augmente.

V
Par ailleurs, si I'on introduit un diélectrique de constante £ entre les i
plaques, la capacité augmente et la tension diminue. En effet, (Dessin: Collége de Candolle)
S
£>¢gy) = C’zsg/‘: U:%\,

Le premier condensateur employé a été la bouteille de Leyde (ville des Pays-Bas) construit en
1745 par Ewald von Kleist. Le diélectrique est le verre d’une bouteille et les armatures sont du
papier d’étain.

Le condensateur est une piece maitresse de 'électronique et sa taille a fortement diminué.
On peut fabriquer un condensateur en superposant des feuilles métalliques et des couches de
diélectrique (par exemple: papier paraffiné ou bakélisé, titanate de baryum BaTiOg, €, = % ~ 10%)
et en branchant les feuilles en paralléle (voir figure 9).

Il existe aussi des condensateurs électrolytiques. Le diélectrique est constitué par une fine
couche d’oxyde isolant qui se forme lors de la premiere mise sous tension. Cela impose une
polarité fixe aux bornes du condensateur qui ne peut étre inversé. La couche de diélectrique

formée étant tres fine (d petit), la capacité est grande. Comme

Q=CU,
une grande capacité permet de stoker beaucoup de charge avec un faible tension.

8.4. Energie d’un conducteur chargé et énergie du champ électrique.
Pour apporter une charge supplémentaire sur un conducteur, il faut effectuer un travail pour
vaincre la répulsion due aux charges déja présentes. Ce travail produit une augmentation de

€ < G Ch o
-/0‘ La ml l—@ H e +€, ..
u “ [1 fz (:t .__.__..Ch
g e U L -Qr -@n
775" &

FIGURE 8. Association de condensateurs: en série (a gauche) et en parallele (&
droite). (Dessin: College de Candolle.)
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F1GURE 9. Réalisation pratique d’un condensateur.

I’énergie du conducteur. Considérons par exemple un conducteur de capacité C' (par rapport a la
matiere environnante supposée suffisamment éloignée) portant une charge ). Son potentiel vaut

Q
U=—=
C
Si l'on ajoute une charge infinitésimale dg au conducteur en 'amenant du lieu ou U = 0, alors le
travail effectué est 7
dI'=Udq = =d
q C q
L’augmentation totale d’énergie du conducteur quand la charge passe de 0 a la valeur () vaut:
Q Q 2@
q lgq I oo 1 2 1 2
Eele = dT' = —dg= == - =-CU* = |&Eye==CU
: /0 /0 cT 2, =3 le =5

e
Cette expression est valable quelle que soit la forme du conducteur chargé.
D’apres ce que nous avons vu plus haut, 1’énergie potentielle d'une charge ¢ (dont la position
est notée 7) dans le champ électrique créé par une charge ¢; (dont la position est notée ;) vaut

1 qq;
goee: U 3 _; T =T
votete = QU ("= 73) Ao |7 — 7|

L’énergie de la charge ¢ dans le champ créé par un ensemble de N charges ¢; est donnée par

1
gpot ele — g -
Are 4 ||7“ - TZH
Pour I’énergie totale du systeme, nous avons donc

11 49;
goee:__ M= =
potele ™ 9 dre 1<§<N |7 — 7]

=z

Dans le cas d'une densité de charge p dans un domaine €2, nous trouvons

p(7)p(r) ,
Eootole = dVdV
potel 247r50// H?“—?“'H

En vertu de la premiere équation de Maxwell

VeE=L 5 ,_ Ve (—ﬁU)

€0

De plus, rappelons que
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Par conséquent, nous trouvons que

_ p(r)p(7 /1/ _5_0/ S o (T
Spoteze—24mo// ||r—r’H ) av av =5 | POV AV = =3 QVo(VU)UdV
Or

Ve (696) = 0. (6(2:0)) 9, (6 (8,0)) + 8- (6 (0.0))
De plus,

00 (6 (0:0)) = (0:0)" + ¢32¢
olt ?¢ désigne la deuxieme dérivée de ¢ par rapport a z. Il suit que
Vo (0V0) = (0:0)" + 6026 + (0,0)" + 6020 + (0.0)" + 0026 = (Vo) o (Vo) + Ao
ol B B
Ap= (P +02+0%) =V e (w)
L’opérateur A = 9% + (95 + 0% est appelé le laplacien. Par conséquent, nous trouvons que

Ve (V) = ~Ao= (Vo) e (Vo) ~ Ve (470)

Avec ces formules, nous trouvons que

potezez——/ (Vo) UdV——/ ((VU) e (VU) =V (U (VU)))av

En vertu de la formule d’Ostrogradsky,

/Q€.<U<6U)> dV:LﬂU(ﬁU)-ﬁ:O

En effet, supposons que toutes les charges sont contenues dans une boule B(7rp,r) de rayon r
centrée en 7. Alors, il suffit de considérer un domaine Q2 = B(7), R) avec R >> r. Ainsi, sur le
bord 02 de 2, U = 0. Par conséquent, nous trouvons que

5potele = 620 o (VU> (€U> dv B VU 20 / E. Edv = potele = / ||E||2dv

ExXEMPLE 8.11. Considérons, a titre d’exemple, un condensateur plan chargé. Entre ses
armatures qui délimitent un certain domaine €2 réegne un champ électrique homogene

_ 9
E()S

Ce champ ne dépend pas de la distance d entre les plaques. On peut donc,

en écartant celles-ci, créer un champ dans un volume supplémentaire. o
Cette création de champ nécessite un certain travail puisque les plaques 2 = ]:;:5 S A AV= Sax
s’attirent (charges +@Q et —@Q). Par exemple, la plaque de droite subit une s ===~

(

force parce qu’elle est plongée dans le champ du a la plaque de gauche,
qui vaut
Q

- 2805

Dessin: Collége de Candolle)
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Chaque plaque produit la moitié du champ total. Le travail vaut donc

1
A= FAr = QEjuancAX = EQAz = |Au.|

La variation d’énergie par unité de volume (%) est donnée par

dgele |Ag€le‘ %EQA.’I? Q 1 Q 1 9
_ _ 2 . Ay Py
dV AV SAz 28 270,57 T 2%

Par conséquent, 1’énergie électrique contenue dans le domaine €2 délimité par les plaques du con-
densateur vaut

€o dgele €o 2
Eele = — dV == | E°dV
! 2/Q AV 2 Jo

EXEMPLE 8.12. Calculons, a titre d’exemple, I’énergie contenue dans tout ’espace qui entoure
un conducteur sphérique de rayon R et qui porte une charge (). Le champ électrique dépend
uniquement de r = ||7]|]. On choisit comme élément de volume dV le volume d’une couche sphérique
de rayon r et d’épaisseur dr:

dV = 4znr? dr

Ainsi,
00 2 2 00 2
€0 1 Q , Q* 1 / 1 Q1
potele = 7o /R (4%50 r2> T ey 2 r T2 "7 4re02R

Rappelons que pour une boule de rayon R,

(Dessin: College de
Candolle)

C = 47T€0R
Par conséquent,
B Q? 1 S 1.Q 1 N P
Epotcle = ATeo 2R U =tV U=3cu

REMARQUE 8.13. Remarquons que si R = 0, la formule ci-dessus donne une énergie infinie
' Notre théorie de 1’électricité n’est donc pas compatible avec des charges ponctuelles. Mais
existe-t-il des charges ponctuelles ? Les expériences dans les anneaux de collisions ete™ donne
Telee < 10719 cm. Par ailleurs Tproton ~ 10~ ecm. En supposant que ’électron est une spheére
conductrice, d’apres la théorie de la relativité restreinte d’Einstein, nous trouvons

1 e? 1 1
E = -meec 2 = = FMelec 2
2t T ey e 2
2 1.6-10719)°
= Telectron = ‘ ~ J- 109 ( ) ~28- 10_15 m

AmEgmerece® 0.1-10-31 (3 - 108)2
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9. Interprétation des équations de Maxwell: électromagnétisme

Nous allons maintenant interpréter les trois autres équations de Maxwell. La deuxiéme ne
concerne que le champ magnétique. La troisieme et la quatrieme décrivent les relations entre
champ électrique et magnétique.

Historiquement, 1’étude des champs magnétiques a été faite empiriquement; les propriétés des
aimants naturels (pierre de magnésie) ou celle des aimants artificiels (fer, acier) entrainerent 1’étude
du champ magnétique pour lui-méme, comme un phénomene indépendant. En 1820, (Ersted fit
des expériences fondamentales qui montrerent qu’'un fil parcouru par un courant produit des effets
identiques a ceux des aimants, soit sur d’autres aimants, soit sur d’autres fils parcourus par des
courants. Des lors, les phénomenes magnétiques trouverent des explications et des lois purent étre
exprimées (Ampere, Lorentz, Laplace, Faraday, Lenz, Maxwell).

Ce que nous appelons le champ magnétique est en fait un effet relativiste du champ électrique.
Un conducteur parcouru par un courant électrique est neutre, mais dans n’importe quel référentiel
en mouvement relativement au conducteur, celui-ci apparait chargé. Par conséquent, un con-
ducteur parcouru par courant exerce une force sur des charges en mouvement relativement au
conducteur: c’est la force de Lorentz

ﬁ:qﬁxé

10. Equation de Maxwell M2

En appliquant la formule d’Ostrogradsky a la deuxieme équation de Maxwell, on déduit que le
flux du champ magnétique a travers n’importe quelle surface fermée est nul. De plus, il n’existe pas
de monopdles magnétiques ou, en d’autres termes, il n’existe pas de source du champ magnétique.

En effet, de la deuxieme équation de Maxwell, il suit en vertu de la formule d’Ostrogradsky,

O:/ﬁogd\/:/ BedS
1% oV

11. Equation de Maxwell M4

Si le champ électrique est constant, la quatrieme équation de Maxwell devient

L B e S 1 V.
AV xB=—j+E 5 |V xB=pj ot pg=——=dr-107 =
€0 gy A -m

est la constante d’induction, également appelée la constante de perméabilité magnétique du vide.
En vertu de la formule de Stockes,

/ é.czf:/(ﬁxé).dﬁzuo/j'.dg:uo(fl—IQ)
950 S S

c’est-a-dire

LSOB.dl: g

algébrique

C’est le théoreme d’ Ampere.
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11.1. Loi de Biot-Savart.
En vertu de la deuxieme équation de Maxwell il vient

VeB=0 = Hﬁtelqueézﬁxg

Le champ vectoriel A est appelé le potentiel vecteur du champ magnétique B. Remarquons qu’il
n’est pas unique puisque

v x (/T+ﬁ¢> _Vx A+ V x (%) ——0vé
—_——
Par conséquent, en vertu de la quatrieme équation de Maxwell, il suit si E = 0, alors

B0 o L9 x =¥ x (Fxd) = (Vo (Tod)-ad)

ou

A=02+0;+0]

est le Laplacien. Il est toujours possible de remplacer A par A+ ﬁgb sans changer B et de choisir
la fonction ¢ telle que

0=Ve (ﬁf%—ﬁ(b) zﬁog—Aqﬁ = A¢:—§O/T
Par conséquent, pour trouver A il faut résoudre les équations suivantes
o 1 _7
AAg = —poJx OU fig = —— =4r-10
CEo
est la constante de perméabilité magnétique du vide. La solution est donnée par
1= Ho 5 (™)
A(r) = — / ————dV
ARy A e

Sion a un fil avec un courant

— = = 7 A I 1 [
I=jedS = jav=1Id = A(r)="5" /ﬁ el
T

et le champ magnétique B est donné par

E—MOI/ de(?Tl—TT’)
fil

B 17 =71

C’est la loi de Biot-Savart.
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11.2. Champ magnétique créé par un courant rectiligne infini.

Imaginons un fil rectiligne infini traversé par un courant constant et une
surface S qui est un disque de rayon r perpendiculaire au fil. En vertu de E’
la loi de Biot-Savart, nous savons que le champ magnétique est tangent
au cercle. De plus, en vertu du théoreme d’Ampere, !

B-27rr:/ gtdf:uof
950 (Dessin: table CRM)

c’est-a-dire

_ ol

B =
2rr

11.3. Champ magnétique créé par une spire unique.
En appliquant la loi de Biot-Savart, on trouve que le champ

magnétique au centre de la spire parcourue par un courant I vaut

, [ [dI'x7  pol
18 = 2 [T o — o
O

73 42 2r

11.4. Champ magnétique créé par une bobine longue.
On considere un solénoide long de longueur [, ¢’est-a-dire un fil enroulé autour d’un cylindre
(une bobine). On trouve que

D—; —
/ Bedl =0
c

si BC est tres grand. Par ailleurs, si la bobine est longue (i.e. [ est

grand), alors
c — — A — —
/ Bedl = — / Bedl B
B D (Dessin: école de physique UNIGE)

/ABCDO

et en vertu du théoreme d’Ampere,

Par conséquent,

o]}
°
2,
ITl
—
&
o]}
[ )
Y
=
Il
oy
h

—

BL—/ B.df—uo/ JedS = LI
ABCDO SaBcD l

2 est le nombre de tours par metre. Il suit que le champ magnétique au centre de la bobine

OfJ. T
vaut

B:MOT

12. Force de Laplace

Si les charges en mouvement sont les électrons d’un courant dans un F E
fil, leur vitesse est tres lente. La force de Lorentz a beau étre infime il
sur chaque électron, elle développe néanmoins un effet d’ensemble - r

tres important par suite du tres grand nombre d’électrons en cause. (Dessin: College de Candolle)
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En régime stationnaire,

I:% N dQ:Idtetdﬁ:dQ(ﬁxé):Idt(ﬁxé) d:dfl(dlﬁxB>

et pour un fil rectiligne de longueur I,

ﬁz[(fXé)

C’est la force de Laplace. La plupart des applications de 1’électricité qui font intervenir des forces
reposent sur cette relation.

REMARQUE 12.1. Comme la force de Lorentz ne travaille pas, 'intensité du courant n’est pas
modifiée par le champ ou se trouve le fil.

12.1. Définition de ’Ampere.
L’expérience de la balance de courant permet de définir I’Ampere a

partir des trois autres unités fondamentales, soit le m, le kg et la ) :
12 . e . L 7 -F
s. Considérons deux fils rectilignes infinis paralleles séparés par une =5 ¢
distance d = 1 m. Alors (voir figure ci-contre), 4 = k-
I 112
F=1I1IB= IZ% = Moﬁ (Dessin: College de Candolle)

La définition officielle de I’Ampere est donnée par le BIPM(*):

L’ampere est l'intensité d’un courant constant qui, maintenu dans deux conducteurs paralléles,
rectilignes, de longueur infinie, de section circulaire négligeable et placés a une distance de 1 metre
I'un de lautre dans le vide, produirait entre ces conducteurs une force égale a 2-10~" newton par
metre de longueur.

13. Equation de Maxwell M3

En appliquant la formule de Stokes a la troisieme équation de Maxwell, on obtient

—cbz—ifé.dﬁz—/é.dgz/(ﬁxﬁ).dﬁ:/ Eedl
dt Js S S 8

ou P est le flux magnétique a travers la surface S.
Imaginons une boucle de fil sur une table reliée a un voltmetre.

Alors, la tension électrique Usp mesurée par le voltmetre est donnée
par

dt S AnB

C’est le principe d’induction: un champ magnétique variable in-
duit une tension électrique égale, au signe pres, a la variation
du flux magnétique. Le phénomene d’induction a été découvert
indépendamment par Faraday et Henry. Il est a la base de nombreux
dispositifs actuellement utilisés: générateurs électriques, transforma-
teurs, etc.

1Bureau International des Poids et Mesures, hitp://www.bipm.org



Equation de Maxwell M3 (page 60/69)

Pour déterminer le sens du courant induit, il faut raisonner comme suit. Imaginons un champ
magnétique homogene vertical

et supposons que S soit le disque

S:{(m,y,z) ‘ z=0¢et x2+y2<R2}

dont nous choisissons l'orientation: dS = ® (ainsi, BedS > 0). Alors,

— é.dgz—BtWT2:/ Eed al

/S (1) iy s = = [ \
Par conséquent, si B augmente (i.e. B > 0), le champ E le B ldS ||§|| — | T |B,,
long du fil tourne dans le sens trigonométrique O et le courant, 2@ 2| -0 0
qui indique le débit des chargeg positives, tourne également ol N -0 e
dans le sens trigonométrique O (?). Par conséquent, le champ ole | /| + 0 ®
Izlagnétique créé par le courant induit rentre dans le plan olel N = 1ol o
Binqa = © et s’oppose a la variation de flux magnétique.
Toutes les situations sont résumées dans le tableau ci-contre (en dS =0 = /
haut pour le choix dS = ® et en bas pour le choix ds = ®). ©
Nous constatons que le champ magnétique crée par le courant [ 3 as I EH o T émd
induit s’oppose a la variation du flux inducteur. Cela revient a 2lol 2 |+ 10 0
dire que tout phénomeéne d’induction s’oppose a sa cause. slol N = 0] ®
C’est la loi de Lenz. Remarquons que le contraire serait absurde, ool AT = 1ol ®
car une petite variation de flux impliquerait la création d’un flux ool N [+ 10l o

infini !
REMARQUE 13.1. Le fait que
/ Eedl#0
O

quand le flux magnétique n’est pas constant, montre que E nest pas conservatif, ¢’est-a-dire qu’il
n’est pas le gradient d'un potentiel. Par conséquent, la tension induite n’est pas une différence
de potentiel. Au lieu de tension induite, on utilise parfois la terminologie “force électro-motrice”.
La boucle représentée plus haut agit comme un générateur. Par conséquent, la tension Usp est

positive quand le courant induit tourne dans le sens trigonométrique O et négative quand le
courant induit tourne dans le sens horaire O. Il suit que

Upp =P sidS =@
Usp = - sidS=0
13.1. Les courants de Foucault.
Tout corps conducteur (métal) soumis a un flux magnétique variable est le siege de courants
induits. La conduction n’étant pas parfaite (sauf dans les supraconducteurs), les courants créent

une agitation thermique des atomes du conducteur (effet Joule). De I’énergie électrique est trans-
formée en énergie thermique. C’est en général, dans un appareil a induction, une cause de perte

2les électrons, qui ont une charge négative, tournent dans le sens horaire O
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d’énergie (par exemple, échauffement des transformateurs). Pour diminuer les courants induits
dans les noyaux de fer des enroulements, on découpe le métal en fines lamelles couvertes d’isolants.
Application: freinage par courants de Foucault.

13.2. Auto-induction.

Reprenons ’exemple d’une boucle de fil. Supposons qu’elle soit par-
courue par un courant I tournant dans le sens horaire ) et adoptons )
la convention & as

I>0si1 O
I<0sil O

A*+ B
U

Le courant crée un champ magnétique perpendiculaire au plan de la boucle dont le sens est donné
par

I O= ]§:®
I O= B=0

et ce champ magnétique est proportionnel a I. De plus, le flux magnétique est proportionnel au
champ magnétique et donc également au courant. Le facteur de proportionnalité est appelé le
coefficient d’auto-induction et se note L:

. V.
® = LI avec dS = ® Unités: {Ts} — [H] (Henry)

Il dépend seulement de la forme géométrique du conducteur. En vertu de la loi de Faraday,

Upg = —®=—LI = |Usg=LI

EXEMPLE 13.2. On considere a nouveau un solénoide long, c¢’est-a-dire un fil enroulé autour

d’un cylindre (une bobine). On trouve que le flux magnétique a travers la bobine vaut

1
® = 7r7“2,uonT

ou r est le rayon de la bobine et [ sa longueur. Par conséquent, la
tension induite par une variation du courant, vaut
n2S

Upng = —n® = —,LLOTj =Ll = |L= ,ugn2§

X

ou S est la surface de la section de la bobine et n le nombre de  (Dessin: écolde de physique UNIGE)
spires.

REMARQUE 13.3. Comme nous 'avons déja mentionné, en raison du signe — dans le loi
de Faraday, la tension induite s’oppose aux variations de courant. Une bobine dans un circuit

électrique joue donc le méme role que la masse inertielle en dynamique. La masse s’oppose aux
variations de vitesse puisque en vertu de la deuxieme loi de Newton

Fres
m

V=a=

De facon similaire, une bobine s’oppose aux variations de courant.
Remarquons que 1’équation pour le courant dans un circuit RLC série est donnée par
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LI+ RI+ 5 — Ugenerateur

ou L est le coefficient d’auto-induction de la bobine, R la valeur
de la résistance, C' la capacité du condensateur et Ugenerateur la 5
tension du générateur. Par ailleurs, I’équation du mouvement d'un
oscillateur harmonique forcé est donnée par |

mi + nt + 2kx = ky(t)

AVAVAVAS SAVAVAVAsme)
ou m est la masse, eta est le coefficient de frottement et 2k la con- || T ;
stante du systeme des deux ressorts. On remarque que ces équations = . -
sont similaires et que L joue le role de m.

14. Applications de I’induction
14.1. Les transformateurs.

Un transformateur se compose de deux enroulements, le primaire @ 2T

et le secondaire, bobinés sur une carcasse métallique (fer doux) qui B

réalise entre eux un couplage inductif. En appliquant une tension - ,(
alternative (U;) au primaire, on y fait circuler un courant alternatif | «— S 20
(I7) qui provoque sans le fer un champ magnétique B (donc un flux g = £ Al
magnétique) alternatif. Ce dernier crée la tension U, dans le sec- Pl fer o

ondaire par induction. , A
(Dessin: College de Candolle)

REMARQUE 14.1. Nous supposons que nous avons des transformateurs idéaux, c’est-a-dire
que nous admettons que la résistance ohmique des cicuits est négligeable et que les pertes de flux
sont aussi négligeables.

Le flux d’induction ® a travers toute section du circuit magnétique est le méme a chaque
instant. Ainsi
{ ®, a travers la bobine 1 = Ni® = &, = N;O

®, a travers la bobine 2 = N,® = Cbg = N2¢>
En considérant la transformation dans le sens 1 — 2, on trouve
Us = Upnaz = = = =N, ®
et en considérant la transformation dans le sens 2 — 1, on trouve
U = Upar = =91 = =N, @

Le transformateur fonctionnant dans les deux sens pour un méme ®, il suit que

Vs _ U _ [UGa_ D,
Ny N U, N

Les transformateurs sont d'un usage extrémement courant, dans toutes les gammes de puis-
sance: radio, T.V., allumage de voiture, industrie, centrales et réseaux électriques, four a induction,
etc.
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15. Equations d’onde
Dans le vide (p =0 et j= 0), les équation de Maxwell deviennent,

VeE=0  (M1)

En dérivant la troisieme équation par rapport a t, on obtient

—éz@t<ﬁxﬁ>:ﬁxE = Vx<c2§x§):02 V(VeB)—(VeV)B

CcM2
=70

c’est-a-dire -
c
ou
0? 0? 0?
=+t s5 1t
ox?  0Oy?> 022
est le Laplacien.
En dérivant la quatrieme équation par rapport a ¢, on obtient

—ﬁz@t <02§x§> — 2V x B MG« (ﬁxﬁ) =2 |V(VeE)—(VeV)E
~——
CJ\:/IIO
c’est-a-dire |-
c

REMARQUE 15.1. Les équations pour E et B sont des équations d’onde comme nous allons
le voir. En introduisant le d’Alembertien

0? 9
O0=— —cA
ot?
Les équations pour E et B deviennent

OE =0et OB =0

Cherchons pour E une solution de la forme

E(Tt) = EO(E)ei(E°f+”t) = E_)O(k_j <COS(E o 7+ wt)+isin(ke i+ wt))
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Alors
0b = - <w2 - c2||k||2> E=0 = w==c|k]

C’est une onde. Calculons sa vitesse: sa longueur d’onde est donnée par

27
1%l
et sa période par
2
="
w
Ainsi, sa vitesse vaut
21
A —_—
V= — = % == L = :l:C
O 1

Pour une condition initiale donnée E (Z,0) pour laquelle la transformée de Fourrier existe

o 1 — - o
E(f, 0) = 3 /Eo(k:)e‘k'xd:)’k
(27r)§
la solution est donnée par
n 1 — - T —
E(Zt) = . /Eo(/f)el(k'ﬁc”klt)d?’k
(2m)2



CHAPITRE 5

Circuits électriques

Dans ce chapitre, nous allons étudier plusieurs circuits électriques composés d'un générateur,
de résistances, de condensateurs et de bobines. Les éléments sont reliés par des fils dont la
résistance est supposée nulle. Les tensions aux bornes des différents éléments sont mesurées avec
un voltmetre et les courants avec un amperemetre.

1. Symboles

Les symboles utilisés pour représenter les différents éléments d’un circuit se trouvent sur dans
le tableau 1.

Fil - Résistance VVV
Amperemetre @ Voltmetre @

Condensateur Bobine 0000
Source de tension continue " Source de tension alternative C

Interrupteur —>— Résistance variable é

TABLEAU 1. Symboles utilisés pour représenter les différents éléments d’un circuit électrique.

2. Lois de Kirchhoff

2.1. Premiere loi de Kirchhoff: Loi des noeuds.
Un neceud est un point dont partent plusieurs fils. En

vertu du principe de conservation de la charge, la somme
algébrique des courants entrants et sortants est nulle:

k=1

On peut, par exemple, adopter la convention de compter
positivement les courants qui entrent et de compter
négativement les courants qui sortent.

2.2. Deuxieme loi de Kirchhoff: Loi des mailles.
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Si le flux du champ magnétique a travers un circuit électrique est nul, alors, en vertu de la
troisieme équation de Maxwell, pour tout chemin fermé (le bord S d’une surface S),

SxFe-B = E.df:/(ﬁxﬁ) d§:—/§d§=0
oS S S

Considérons par exemple le chemin
A-B—-C—-D—A

sur le circuit présenté ci-contre. Il y a un générateur et trois
éléments quelconques. Alors,

/ EOdf:0=>UAB+UBc+UCD+UDAZO
A—B—C—D—A

Cette loi est valable dans le cas de courants continus. Elle reste valable en bonne approximation
avec des courants alternatifs a “basses fréquences”. Pour de 1’électronique hautes fréquences,
I’auto-induction dans le circuit n’est plus négligeable.

3. Les Résistances
Pour une résistance,

Usp=R-1 ;
ou I est le courant traversant la résistance, c’est-a-dire le débit de charge (unités: B
% = A=ampere) compté positivement dans le sens de la fleche. La constante R est
appelée la résistance (unités: % = Q=0hm). Par exemple, pour un fil de section S
et de longueur [,
; A
R=p—
s

ol p est la résistivité du matériau utilisé. Par exemple,
Pevivie = 1.68-107% Q- m

Pverre = 1017 Q-m

La puissance dissipée par une résistance est donnée par (effet Joule)
UQ

P=U-I=RI*=—
R

En effet, une charge ¢ passant a travers la résistance perd une énergie égale a

q-U

Cette énergie est transformée en chaleur. La quantité d’énergie dissipée par unité de temps est
donnée par
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3.1. Résistances en séries.
Des résistances montées en série comme sur la fig-

: . \ L. R R R
ure ci-contre sont équivalentes & une résistance de 1 2 3

résistance Requiv. Le courant traversant toutes les " VVV T VVV P VVV e

;. . , A B C D
résistances est le méme. Par conséquent

UAD = UAB + UBC + UCD = R1[ + RQI + RBI = Reqm’v[ = Requiv = Rl + RZ + R3

3.2. Résistances en parallele.

Des résistances montées en parallele comme sur la figure ci-

contre sont équivalentes a une résistance de résistance Requip. La Ry
différence de potentiel aux bornes de toutes les résistances est la —ANN—

meme. Par conséquent Ry

Usp = Rili = Roly = Ryly = RequiT ot I =1+ I + Iy Ar—"NVW—— B

Ll 1 _htbtl 111 —NVW—

Reiv  Uas  Uas R By Ry s

1 1 1 1
= = —+

Reqm‘v Rl R_2 * R_3

4. Les condensateurs

Comme nous I'avons vu, la tension (ou différence de potentiel) aux bornes d'un condensateur
est donnée par

U==¢

Par conséquent, en dérivant par rapport au temps, on trouve

. I
U=—
C
ou [ est le courant traversant le condensateur.
Soyons plus précis concernant le signe du courant:

: 1
UAB:%:>UAB:5 C

1
ou le courant I > 0 dans le sens de la fleche et I < 0 dans le A B

sens contraire. Rappelons que par convention, le courant indique

le mouvement des charges positives.
En effet, imaginons par exemple que la plaque de gauche du condensateur soit positive (et

donc celle de droite est négative). Alors Ugqp > 0. Si le courant est dans le sens de la fleche, cela
signifie que la plaque de droite se charge négativement et donc Uap > 0. De facon similaire, si
c’est la plaque de droite du condensateur qui est positive, alors Usp < 0. Si le courant est dans
le sens de la fleche, alors la charge de la plaque de droite diminue et Uag > 0.
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4.1. Décharge et décharge d’un condensateur a travers une résistance.
On charge un condensateur puis on ferme le commutateur du

circuit représenté sur la figure ci-contre. En vertu des lois de

Kirchhoff, il vient B > C
UAB+UCD:0:>%+RI:0
. ol R
d . I .
T Q RIi=0 = —+RI=0
ot o+
, A D
RI = -5 = 1) = Tye H/(EO)

ou I représente la valeur absolue du courant. Le sens du courant est déterminé par la charge
initiale du condensateur. Par exemple, si initialement, la plaque supérieur du condensateur est
positive, alors le courant tournera dans le sens horaire ). Par ailleurs,

Qo |Qol
Rly=—/ = lhy=—=
‘T C " RC
Conclusion: le courant décroit de maniere exponentielle.
On considere le circuit représenté sur la figure 1. On charge le condensateur en mettant le
commutateur en position 1 et on le décharge en mettant le commutateur en position 2. Lorsque

le commutateur est en position 1, en vertu des lois de Kirchhoff, il vient (Uy > 0)

Upa+Usp+Upp =0 = —Uo—i-%-i-R[:O

a I .
S0+ S+ RI=0 = I(t) = Ioe™/" avec Uy = RIy

Par ailleurs, la charge du condensateur est donnée par,

t
1Q(t)| = / I(r)dr = —IyRCe™ ") + [\ RC = I,RC (1 — ¢ /) = Uy C (1 — /R
0

Par ailleurs, en vertu de la Loi de Kirchhoff,
Uap = —Upa — Upp = Uy — RI = Uy — RIpe™ /9 = U (1 — /()

4.2. Tube a décharges.

En disposant aux bornes d’'une capacité un tube & décharges (voir figure 2) qui la court-circuite
lorsque la tension atteint une valeur U, (tension d’allumage) et qui la branche pour une tension
U. (tension d’extinction), on obtient une répétition du phénomeéne sous forme d’oscillations de
relaxation. Si la résistance interne du tube est beaucoup plus petite que la résistance R, la
décharge est quasi-instantanée. La période T est donnée par

Uy =Up (1 —e "/ (RY) = t; = —RCIn(1 — U,/Uy)
U.=Up (1 —e /D) = ¢, = —RCIn(1 — U, /Uy)

UO_Ua UO_Ue
= T=t1—ty=—RCln| —+ )| =RCln| ——
' ’ H(UO_UE> n(UO_Ua>
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4.3. Impédance d’un circuit RC série.
Un circuit RC série est soumis a une tension alternative

Upa = Uy sin(wt)

ou Uy > 0. Alors, en vertu de la Loi de Kirchhoff,

U :RI+9 B [T = RI 4 4
BA C BA C

c’est-a-dire

é + RI = Uyw cos(wt)

La solution générale de 1’équation homogene est donnée par

I(t) = Ipe™/(EO)

Pour trouver une solution particuliere de I’équation complete, il faut poser

I(t) = acos(wt) + bsin(wt)

A i L
e a’\ o ’
U, — |+ o, 0
s
B
? \' f\\f\—ﬂb\.
D

Fi1GURE 1. Charge d’un condensateur.

S

K
——/\/ 1‘? / 4\/’/‘\\

AN

FI1GURE 2. Tube a décharges.
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En substituant dans I’équation différentielle, on obtient

%cos(wt) + %sin(wt) — Rawsin(wt) + Rbw cos(wt) = Upw cos(wt) ¥V t

c’est-a-dire

&+ Rbw = Upw wCU, Rw*C?U,

= a=—""2 etb=—v_ 2
% — Raw =20 1+ R2w2(C? 1+ R2w2(C?
Rappelons la formule trigonométrique:
acos(wt) + bsin(wt) = Asin(wt + 9)
En posant ¢t = 0 on obtient
a = Asin(0)
et en posant ¢ = 7, il vient
b= Asin (g + 5) = Acos(9)

Par conséquent,

A+ =A% = A=Va2+ b

et
tan(d) = % et sign(0) = sign(a)
Avec cette formule, il suit que
I(t) = @Lnae sin(wt + 0)
ou
[ Vw?C?2UE + RPUGC UpwC'
mar 1+ R22(C?2 V1t RW2C?
et
tan(d) = L
" RwC
On définit 'impédance du circuit comme
Umax
7 =
Imax
C’est I’équivalent de
U
R=—
I
pour du courant alternatif. Dans notre cas, il vient
Uy 1
7 = — R2
Lo w2(C? *

Remarquons que pour R = 0, il vient

1 T
= —et="2
c° 2

w
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